Alterations of epigenetic regulators and P53 mutations in murine mesenchymal stem cell cultures: A possible mechanism of spontaneous transformation

Author:

Metwally Ayman Mohamed12,Li Hanchen3,Houghton JeanMarie2

Affiliation:

1. Technology of Medical Laboratory Department, College of Applied Health Science Technology, Misr University for Science and Technology, 6th of October, Egypt

2. Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA

3. Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA

Abstract

BACKGROUND: Recent studies demonstrated the involvement of mesenchymal stem/stromal cells (MSCs) in carcinogenesis, but the molecular mechanism behind this transformation is still obscured. OBJECTIVE: To screen both the expression levels of polycomb and trithorax epigenetic regulators and TrP53 mutations in early and late MSC culture passages in an attempt to decipher the mechanism of spontaneous transformation. METHODS: The study was conducted on early and late passages of MSC culture model from C57BL/6J mice. The expression profile of 84 epigenetic regulators was examined using RT2 profiler PCR array. TrP53 mutations in the DNA binding domain was screened. Codons, amino acids positions and the corresponding human variants were detected in P53 sequences. RESULTS: Sixty-two epigenetic regulators were dysregulated. Abnormalities were detected starting the third passage. Nine regulators were dysregulated in all passages. (C>G) substitution P53 mutation was detected in passage 3 resulting in Ser152Arg substitution. Passages 6, 9, 12 and the last passage showed T>C substitution resulting in Cys235Arg substitution. The last passage had T deletion and A insertion resulting in frame shift mutations changing the p.Phe286Ser and p.Asn103Lys respectively. CONCLUSION: In vitro expanded MSCs undergo transformation through alteration of epigenetic regulators which results in genomic instability and frequent P53 mutations.

Publisher

IOS Press

Subject

Cancer Research,Genetics,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3