A discrete equilibrium optimization algorithm for breast cancer diagnosis

Author:

Haouassi Hichem,Mahdaoui Rafik,Chouhal Ouahiba

Abstract

Illness diagnosis is the essential step in designating a treatment. Nowadays, Technological advancements in medical equipment can produce many features to describe breast cancer disease with more comprehensive and discriminant data. Based on the patient’s medical data, several data-driven models are proposed for breast cancer diagnosis using learning techniques such as naive Bayes, neural networks, and SVM. However, the models generated are hardly understandable, so doctors cannot interpret them. This work aims to study breast cancer diagnosis using the associative classification technique. It generates interpretable diagnosis models. In this work, an associative classification approach for breast cancer diagnosis based on the Discrete Equilibrium Optimization Algorithm (DEOA) named Discrete Equilibrium Optimization Algorithm for Associative Classification (DEOA-AC) is proposed. DEOA-AC aims to generate accurate and interpretable diagnosis rules directly from datasets. Firstly, all features in the dataset that contains continuous values are discretized. Secondly, for each class, a new dataset is created from the original dataset and contains only the chosen class’s instances. Finally, the new proposed DEOA is called for each new dataset to generate an optimal rule set. The DEOA-AC approach is evaluated on five well-known and recently used breast cancer datasets and compared with two recently proposed and three classical breast cancer diagnosis algorithms. The comparison results show that the proposed approach can generate more accurate and interpretable diagnosis models for breast cancer than other algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3