Using the two optimization algorithms (BBO and FDA) coupling with radial basis neural network to estimate the compressive strength of high-ultra-performance concrete

Author:

Wu Mengmeng1

Affiliation:

1. School of Civil Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, China

Abstract

Using Ultra-High Performance Concrete (UHPC) as the highly resistant material is widely advised in constructing sensitive structures to enhance safety. The utilization of eco-friendly contents such as fly-ash and silica-fume replacing cement can decrease the pollution rate in the production process of concrete and improve the compressive strength (CS) factor. There are many ways to appraise the CS of concretes as empirically and mathematically Artificial Neural Networks (ANN) as the high-accurate model is used in the present study. In this regard, Radial Basis Function (RBF) coupling with Biogeography-Based Optimization (BBO) and Flow Direction Algorithm (FDA) created the two high-accurate frameworks: BBO-RBF and FDA-RBF. Enhancing the accuracy of RBF to predict the CS and decreasing the ANN net complexity leads to having better results evaluated by various metrics. Therefore, using the proposed frameworks, the correlation index of R2 to model the CS in the training phase for FDA-RBF was calculated at 0.9, although BBO-RBF could get 0.85, with a 0.5% difference. However, the RMSE of FDA-RBF was 9 MPa, and for BBO-RBF, this index was calculated at 10 MPa the former model has about three percent more accuracy than the latter.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3