Clinical impact of anisotropic analytical algorithm and Acuros XB dose calculation algorithms for intensity modulated radiation therapy in lung cancer patients

Author:

Abdullah Chaymaa1,Farag Hamed2,El-Sheshtawy Wael1,Aboelenein Hassan3,Guirguis O.W.4

Affiliation:

1. Radiation Oncology and Nuclear Medicine Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

2. Nuclear Medicine Unit, National Cancer Institute, Cairo University, Giza, Egypt

3. Radiotherapy Department, Sohag Oncology Institute, Egypt

4. Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt

Abstract

OBJECTIVE: To evaluate dose differences predicted between using Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) in patients diagnosed with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). METHODS: A phantom study was done to evaluate the dose prediction accuracy of AXB and AAA beyond low-density medium by comparing the calculated measurement results. Thirty-two advanced NSCLC patients were subjected to IMRT. The dose regimen was 60 Gy over 30 fractions. Effects on planning target volume (PTV) and organ-at-risk (OAR) were evaluated. Clinically acceptable treatment plans with AAA were re-calculated using AXB algorithms with two modes Dw and Dm at the same beam arrangements and multileaf collimator leaf settings as with AAA. RESULTS: Using AXB yielded better agreement with the measurements and the average dose difference for all points was about 0.5%. Conversely, using AAA showed a larger disagreement with measured values and the average difference was up to 5.9%. The maximum relative difference was between AXB_Dm and AAA for PTV dose (D98 %). The percentage dose differences of plans calculated by AAA, AXB_Dw and AAA, AXB_Dm revealed that AAA overestimated the dose than AXB. Regarding OAR, results showed significant difference for lungs-PTV. CONCLUSIONS: AXB algorithm yields more accurate dose prediction than AAA in heterogeneous medium. Differences in dose distribution are observed when plans re-calculated with AXB indicating that AAA apparently overestimates dose, particularly the PTV dose. Thus, AXB algorithm should be used in preference to AAA for cases in which PTVs are involved with tissues of highly different densities, such as lung.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3