Braiding drive data processing through rote learning

Author:

Chen Bin,Xu Huan,Yang Qiuyong,Zhao Zhiyu,You Shaohua

Abstract

It is difficult for traditional data processing methods to make full use of the potential of braiding driven data, unable to quickly collect and preprocess data, and difficult to ensure the accuracy of data. Rote learning (RL) is part of the research field of artificial intelligence, which aims to enable computers to learn autonomously, just like humans. This allows understanding of relationships and patterns between data and helps computers process information quickly. In order to solve the problems of poor data integrity, slow data processing efficiency and poor information sharing in traditional data processing, and further optimize the braiding driven data processing technology, this paper combined RL with braiding driven data. Through the method of mechanical learning, the potential of weaving driving data is fully exerted, so that it can better cope with nonlinear relations and high-dimensional features. It used the effective method provided by the RL to process the braiding drive data, collect the data, and preprocessed the collected data to ensure the correctness of the data. It extracted the features of the data, which was convenient to classify the data according to its attributes. At the same time, this paper verified it by the steps of feature extraction, model training and data analysis. In order to test whether braiding drive data processing by RL can effectively solve the problems existing in traditional drive data technology, this paper tested the performance of compiled drive data processing, and the analysis results were as follows. The data integrity rate of braiding drive data was as low as 81%, which was much higher than that of traditional drive data processing. The recognition ability of data acquisition and matching was much higher than that of traditional drive data processing. Compared with the traditional drive data processing, the information sharing has been greatly improved. In terms of data processing efficiency, it is also much higher than the traditional drive data processing. It can be seen that the method of braiding drive data processing through RL effectively improves the accuracy of data processing. It strengthens the identification ability of data collection and matching, improves the sharing of information, enables users to obtain data and analyze it faster, and also improves the processing efficiency of data.

Publisher

IOS Press

Reference19 articles.

1. Arquitectura de referencia de ecosistemas de datos basada en data mesh & data fabric;Tatiana Delgado;Revista Cubana de Administracion Publica y Empresarial,2022

2. Linked data technologies and what libraries have accomplished so far;Wang;International Journal of Librarianship,2018

3. Data-driven glass/ceramic science research: Insights from the glass and ceramic and data science/informatics communities;De Guire;Journal of the American Ceramic Society,2019

4. Visualizing the complexity of the athlete-monitoring cycle through principal-component analysis;Dan;International Journal of Sports Physiology and Performance,2019

5. A study on a distributed data fabric-based platform in a multi-cloud environment;Moon;International Journal of Advanced Culture Technology (IJACT),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3