Protective Effects of Rivaroxaban on White Matter Integrity and Remyelination in a Mouse Model of Alzheimer’s Disease Combined with Cerebral Hypoperfusion

Author:

Bian Zhihong1,Hu Xinran1,Liu Xia2,Yu Haibo1,Bian Yuting1,Sun Hongming1,Fukui Yusuke1,Morihara Ryuta1,Ishiura Hiroyuki1,Yamashita Toru1

Affiliation:

1. Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan

2. Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Background: Alzheimer’s disease (AD) is characterized by cognitive dysfunction and memory loss that is accompanied by pathological changes to white matter. Some clinical and animal research revealed that AD combined with chronic cerebral hypoperfusion (CCH) exacerbates AD progression by inducing blood-brain barrier dysfunction and fibrinogen deposition. Rivaroxaban, an anticoagulant, has been shown to reduce the rates of dementia in atrial fibrillation patients, but its effects on white matter and the underlying mechanisms are unclear. Objective: The main purpose of this study was to explore the therapeutic effect of rivaroxaban on the white matter of AD+CCH mice. Methods: In this study, the therapeutic effects of rivaroxaban on white matter in a mouse AD+CCH model were investigated to explore the potential mechanisms involving fibrinogen deposition, inflammation, and oxidative stress on remyelination in white matter. Results: The results indicate that rivaroxaban significantly attenuated fibrinogen deposition, fibrinogen-related microglia activation, oxidative stress, and enhanced demyelination in AD+CCH mice, leading to improved white matter integrity, reduced axonal damage, and restored myelin loss. Conclusions: These findings suggest that long-term administration of rivaroxaban might reduce the risk of dementia.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3