Directional effects of whole-body spinning and visual flow in virtual reality on vagal neuromodulation

Author:

Yang Alexander Hui Xiang1,Khwaounjoo Prashanna12,Cakmak Yusuf Ozgur1234

Affiliation:

1. Department of Anatomy, University of Otago, Dunedin, New Zealand

2. Medtech Core NZ, Auckland, New Zealand

3. Brain Health Research Centre, Dunedin, New Zealand

4. Centre for Health Systems and Technology, Dunedin, New Zealand

Abstract

BACKGROUND: Neural circuits allow whole-body yaw rotation to modulate vagal parasympathetic activity, which alters beat-to-beat variation in heart rate. The overall output of spinning direction, as well as vestibular-visual interactions on vagal activity still needs to be investigated. OBJECTIVE: This study investigated direction-dependent effects of visual and natural vestibular stimulation on two autonomic responses: heart rate variability (HRV) and pupil diameter. METHODS: Healthy human male subjects (n = 27) underwent constant whole-body yaw rotation with eyes open and closed in the clockwise (CW) and anticlockwise (ACW) directions, at 90°/s for two minutes. Subjects also viewed the same spinning environments on video in a VR headset. RESULTS: CW spinning significantly decreased parasympathetic vagal activity in all conditions (CW open p = 0.0048, CW closed p = 0.0151, CW VR p = 0.0019,), but not ACW spinning (ACW open p = 0.2068, ACW closed p = 0.7755, ACW VR p = 0.1775,) as indicated by an HRV metric, the root mean square of successive RR interval differences (RMSSD). There were no direction-dependent effects of constant spinning on sympathetic activity inferred through the HRV metrics, stress index (SI), sympathetic nervous system index (SNS index) and pupil diameter. Neuroplasticity in the CW eyes closed and CW VR conditions post stimulation was observed. CONCLUSIONS: Only one direction of yaw spinning, and visual flow caused vagal nerve neuromodulation and neuroplasticity, resulting in an inhibition of parasympathetic activity on the heart, to the same extent in either vestibular or visual stimulation. These results indicate that visual flow in VR can be used as a non-electrical method for vagus nerve inhibition without the need for body motion in the treatment of disorders with vagal overactivity. The findings are also important for VR and spinning chair based autonomic nervous system modulation protocols, and the effects of motion integrated VR.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3