Adaptive path planning for unknown environment monitoring

Author:

Gomathi Nandhagopal1,Rajathi Krishnamoorthi1

Affiliation:

1. Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India

Abstract

The purpose of this paper is to offer a unique adaptive path planning framework to address a new challenge known as the Unknown environment Persistent Monitoring Problem (PMP). To identify the unknown events’ occurrence location and likelihood, an unmanned ground vehicle (UGV) equipped with a Light Detection and Ranging (LIDAR) and camera is used to record such events in agriculture land. A certain level of detecting capability must be the distinct monitoring priority in order to keep track of them to a certain distance. First, to formulate a model, we developed an event-oriented modelling strategy for unknown environment perception and the effect is enumerated by uncertainty, which takes into account the sensor’s detection capabilities, the detection interval, and monitoring weight. A mobile robot scheme utilizing LIDAR on integrative approach was created and experiments were carried out to solve the high equipment budget of Simultaneous Localization and Mapping (SLAM) for robotic systems. To map an unfamiliar location using the robotic operating system (ROS), the 3D visualization tool for Robot Operating System (RVIZ) was utilized, and GMapping software package was used for SLAM usage. The experimental results suggest that the mobile robot design pattern is viable to produce a high-precision map while lowering the cost of the mobile robot SLAM hardware. From a decision-making standpoint, we built a hybrid algorithm HSAStar (Hybrid SLAM & A Star) algorithm for path planning based on the event oriented modelling, allowing a UGV to continually monitor the perspectives of a path. The simulation results and analyses show that the proposed strategy is feasible and superior. The performance of the proposed hyb SLAM-A Star-APP method provides 34.95%, 27.38%, 33.21% and 29.68% lower execution time, 26.36%, 29.64% and 29.67% lower map duration compared with the existing methods, such as ACO-APF-APP, APFA-APP, GWO-APP and PSO-APP.

Publisher

IOS Press

Subject

Software

Reference60 articles.

1. Online optimization application on path planning in unknown environments;Abed;Journal Européen des Systèmes Automatisés,2022

2. FARM technology adoption by smallholder farmers in Ghana;Anang;Review of Agricultural and Applied Economics,2018

3. Uniform coverage of automotive surface patches;Atkar;The International Journal of Robotics Research,2005

4. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by unmanned aerial vehicle in low-light conditions;Baker;Journal of Emergency Management,2020

5. An optimization-based receding horizon trajectory planning algorithm;Bergman;IFAC-Papers On Line,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3