Facioscapulohumeral Disease as a myodevelopmental disease: Applying Ockham’s razor to its various features

Author:

Padberg G.W.1,van Engelen B.G.M.1,Voermans N.C.1

Affiliation:

1. Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands

Abstract

 Facioscapulohumeral muscular dystrophy (FSHD) is an exclusively human neuromuscular disease. In the last decades the cause of FSHD was identified: the loss of epigenetic repression of the D4Z4 repeat on chromosome 4q35 resulting in inappropriate transcription of DUX4. This is a consequence of a reduction of the array below 11 units (FSHD1) or of a mutation in methylating enzymes (FSHD2). Both require the presence of a 4qA allele and a specific centromeric SSLP haplotype. Muscles become involved in a rostro-caudally order with an extremely variable progression rate. Mild disease and non-penetrance in families with affected individuals is common. Furthermore, 2% of the Caucasian population carries the pathological haplotype without clinical features of FSHD. In order to explain the various features of FSHD we applied Ockham’s Razor to all possible scenarios and removed unnecessary complexities. We postulate that early in embryogenesis a few cells escape epigenetic silencing of the D4Z4 repeat. Their number is assumed to be roughly inversely related to the residual D4Z4 repeat size. By asymmetric cell division, they produce a rostro-caudal and medio-lateral decreasing gradient of weakly D4Z4-repressed mesenchymal stem cells. The gradient tapers towards an end as each cell-division allows renewed epigenetic silencing. Over time, this spatial gradient translates into a temporal gradient based on a decreasing number of weakly silenced stem cells. These cells contribute to a mildly abnormal myofibrillar structure of the fetal muscles. They also form a downward tapering gradient of epigenetically weakly repressed satellite cells. When activated by mechanical trauma, these satellite cells de-differentiate and express DUX4. When fused to myofibrils they contribute to muscle cell death in various ways. Over time and dependent on how far the gradient reaches the FSHD phenotype becomes progressively manifest. We thus hypothesize FSHD to be a myodevelopmental disease with a lifelong attempt to restore DUX4 repression.

Publisher

IOS Press

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3