Rifampicin Suppresses Amyloid-β Accumulation Through Enhancing Autophagy in the Hippocampus of a Lipopolysaccharide-Induced Mouse Model of Cognitive Decline

Author:

Zhu Lihong1,Yuan Qiongru2,Zeng Zhaohao2,Zhou Ruiyi2,Luo Rixin2,Zhang Jiawei1,Tsang Chi Kwan3,Bi Wei23

Affiliation:

1. Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, PR China

2. Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China

3. Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, PR, China

Abstract

Background: Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) deposition. The metabolism of Aβ is critically affected by autophagy. Although rifampicin is known to mediate neuroinflammation, the underlying mechanism by which rifampicin regulates the cognitive sequelae remains unknown. Objective: Based on our previous findings that rifampicin possesses neuroprotective effects on improving cognitive function after neuroinflammation, we aimed to examine in this study whether rifampicin can inhibit Aβ accumulation by enhancing autophagy in a mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. Methods: Adult C57BL/6 mice were intraperitoneally injected with rifampicin, chloroquine, and/or LPS every day for 7 days. Pathological and biochemical assays and behavioral tests were performed to determine the therapeutic effect and mechanism of rifampicin on the hippocampus of LPS-induced mice. Results: We found that rifampicin ameliorated cognitive impairments in the LPS-induced mice. In addition, rifampicin attenuated the inhibition of autophagosome formation, suppressed the accumulation of Aβ1–42, and protected the hippocampal neurons against LPS-induced damage. Our results further demonstrated that rifampicin improved the neurological function by promoting autophagy through the inhibition of Akt/mTOR/p70S6K signaling pathway in the hippocampus of LPS-induced mice. Conclusion: Rifampicin ameliorates cognitive impairment by suppression of Aβ1–42 accumulation through inhibition of Akt/mTOR/p70S6K signaling and enhancement of autophagy in the hippocampus of LPS-induced mice.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3