Iron Chelation Remits Memory Deficits Caused by the High-Fat Diet in a Mouse Model of Alzheimer’s Disease

Author:

Xiao Yifan12,Gong Xiaokang1,Deng Ronghua12,Liu Wei12,Yang Youhua12,Wang Xiaochuan13,Wang Jianzhi13,Bao Jian12,Shu Xiji12

Affiliation:

1. Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China

2. Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China

3. Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Background: Obesity is a worldwide health problem that has been implicated in many diseases, including Alzheimer’s disease (AD). AD is one of the most common neurodegenerative disorders and is characterized by two pathologies, including extracellular senior plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) consisting of abnormally hyperphosphorylated tau. According to current research, a high-fat diet (HFD) could exacerbate Aβ accumulation, oxidative damage, and cognitive defects in AD mice. However, the accurate role of HFD in the pathogenesis of AD is far more unclear. Objective: To explore the accurate role of HFD in the pathogenesis of AD. Methods: Open Field, Barns Maze, Elevated zero-maze, Contextual fear condition, Tail suspension test, western blotting, immunofluorescence, Fluoro-Jade C Labeling, Perls’ Prussian blue staining, and ELISA were used. Results: HFD caused nonheme iron overload in the brains of APPswe/PS1dE9 (APP/PS1) mice. Furthermore, the administration of M30 (0.5 mg/kg) for iron chelation once every 2 days per os (p.o.) for 1 month remitted memory deficits caused by HFD in APP/PS1 mice. Notably, a variety of hematological parameters in whole blood had no difference after iron chelation. In addition, iron chelation effectively reduced synaptic impairment in hippocampus and neuronal degeneration in cortex in the HFD-fed APP/PS1 mice. Meanwhile, iron chelation decreased Aβ1–40 and Aβ1–42 level as well as neuroinflammation in HFD-fed APP/PS1 mice. Conclusion: These data enhance our understanding of how HFD aggravates AD pathology and cognitive impairments and might shed light on future preclinical studies.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3