Linear feature projective geometric damped convolutional deep belief network for indoor floor planning

Author:

Pichaimani Venkateswari1,Kalava Manjula Ramakrishama2

Affiliation:

1. Department of Computer Science and Engineering, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam

2. Department of Computer Science and Engineering, School of Computing, SASTRA Deemed University, Tirumalaisamudram

Abstract

Wireless localization or positioning is essential for delivering location-based services for designing location tracking systems. Traditional indoor floor planning system employs wireless signals for accurate position estimation. But these positioning schemes failed to perform position estimation effectively and accurately through many obstacles or objects. The novel technique called Linear Features Projective Geometric Damped Convolutional Deep Belief Network (LFPGDCDBN) is introduced to improve the position estimation accuracy with minimum error. The proposed LFPGDCDBN technique includes two major processes namely dimensionality reduction and position estimation. First, the dimensionality reduction process is performed by projecting the principle features using Linear Helmert–Wolf blocked Sammon projection. After the feature selection, Geometric Levenberg–Marquardt Convolutional deep belief network is employed to estimate the position of the devices with higher accuracy and minimum error. The Convolutional deep belief network uses the triangulation geometric method to identify the position of the device in an indoor positioning system. Then the Levenberg–Marquardt function is a Damped least square method to minimize the squares of the deviations between the expected and observed results at the output unit. As a result, the LFPGDCDBN increases the positioning accuracy and minimizes the error rate. Experimental MATLAB assessment is carried out with various factors such as computational time, Computational space, positioning accuracy, and positing error. The experimental results and discussion indicate that the proposed LFPGDCDBN provides improved performance in terms of achieving higher positioning accuracy and minimum error as well as computational time when compared to the existing methods. The experimental results and discussion indicate that the proposed LFPGDCDBN increases the positioning accuracy by 47% and computational time, computational complexity, and reduces the positioning error by 45%, 29%, and 74% as compared to state-of-the-art works.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3