Hyperglycemia Aggravates the Cerebral Ischemia Injury via Protein O-GlcNAcylation

Author:

Zhu Jing12,Ji Xin32,Shi Ruirui2,He Tianqi32,Chen Su-ying4,Cong Ruochen4,He Bosheng4,Liu Su1,Xu Hui2,Gu Jin-hua32

Affiliation:

1. Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China

2. Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China

3. Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Medical School of Nantong University, Nantong, China

4. Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China

Abstract

Background: At least one-third of Alzheimer’s disease (AD) patients have cerebrovascular abnormalities, micro- and macro-infarctions, and ischemic white matter alterations. Stroke prognosis impacts AD development due to vascular disease. Hyperglycemia can readily produce vascular lesions and atherosclerosis, increasing the risk of cerebral ischemia. Our previous research has demonstrated that protein O-GlcNAcylation, a dynamic and reversible post-translational modification, provides protection against ischemic stroke. However, the role of O-GlcNAcylation in the exacerbation of cerebral ischemia injury due to hyperglycemia remains to be elucidated. Objective: In this study, we explored the role and underlying mechanism of protein O-GlcNAcylation in the exacerbation of cerebral ischemia injury caused by hyperglycemia. Methods: High glucose-cultured brain microvascular endothelial (bEnd3) cells were injured by oxygen-glucose deprivation. Cell viability was used as the assay result. Stroke outcomes and hemorrhagic transformation incidence were assessed in mice after middle cerebral artery occlusion under high glucose and streptozotocin-induced hyperglycemic conditions. Western blot estimated that O-GlcNAcylation influenced apoptosis levels in vitro and in vivo. Results: In in vitro analyses showed that Thiamet-G induces upregulation of protein O-GlcNAcylation, which attenuates oxygen-glucose deprivation/R-induce injury in bEnd3 cells cultured under normal glucose conditions, while aggravated it under high glucose conditions. In in vivo analyses, Thiamet-G exacerbated cerebral ischemic injury and induced hemorrhagic transformation, accompanied by increased apoptosis. While blocking protein O-GlcNAcylation with 6-diazo-5-oxo-L-norleucine alleviated cerebral injury of ischemic stroke in different hyperglycemic mice. Conclusion: Overall, our study highlights the crucial role of O-GlcNAcylation in exacerbating cerebral ischemia injury under conditions of hyperglycemia. O-GlcNAcylation could potentially serve as a therapeutic target for ischemic stroke associated with AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3