Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach

Author:

Yang Dalin1,Hong Keum-Shik12

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Guemjeong-gu, Busan, Republic of Korea

2. Department of Cogno-Mechatronics Engineering, Pusan National University, Guemjeong-gu, Busan, Republic of Korea

Abstract

Background: Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer’s disease. Early diagnosis of MCI can allow for treatment to improve cognitive function and reduce modifiable risk factors. Objective: This study aims to investigate the feasibility of individual MCI detection from healthy control (HC) using a minimum duration of resting-state functional near-infrared spectroscopy (fNIRS) signals. Methods: In this study, nine different measurement durations (i.e., 30, 60, 90, 120, 150, 180, 210, 240, and 270 s) were evaluated for MCI detection via the graph theory analysis and traditional machine learning approach, such as linear discriminant analysis, support vector machine, and K-nearest neighbor algorithms. Moreover, feature representation- and classification-based transfer learning (TL) methods were applied to identify MCI from HC through the input of connectivity maps with 30 and 90 s duration. Results: There was no significant difference among the nine various time windows in the machine learning and graph theory analysis. The feature representation-based TL showed improved accuracy in both 30 and 90 s cases (i.e., 30 s: 81.27% and 90 s: 76.73%). Notably, the classification-based TL method achieved the highest accuracy of 95.81% using the pre-trained convolutional neural network (CNN) model with the 30 s interval functional connectivity map input. Conclusion: The results indicate that a 30 s measurement of the resting-state with fNIRS could be used to detect MCI. Moreover, the combination of neuroimaging (e.g., functional connectivity maps) and deep learning methods (e.g., CNN and TL) can be considered as novel biomarkers for clinical computer-assisted MCI diagnosis.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3