Bioinformatics-Based Analysis of Circadian Rhythm Regulation Mechanisms in Alzheimer’s Disease

Author:

Zhang Jie1,Gao Shang1,Liu Wei23

Affiliation:

1. The First Clinical Medical College of Shandong University of Traditional Chinese, Medicine, Jinan, Shandong Province, China

2. Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

3. The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

Abstract

Background: There is a close association between Alzheimer’s disease (AD) and circadian rhythms, and neuroinflammatory-related pathways are associated with both interactions. Objective: To reveal the relationship between circadian rhythm (CR) and AD at the level of genes, pathways, and molecular functions through bioinformatics. Methods: We analyzed the differential genes between AD and control groups in GSE122063 and found the important gene modules; obtained CR-related genes from GeenCard database; used Venn 2.1 database to obtain the intersection of genes of AD important modules with CR-related genes; and used STRING database and Cytoscape 3.7.1 to construct the gene protein-protein interaction network. The MCODE plugin was used to screen pivotal genes and analyze their differential expression. We trranslated with www.DeepL.com/Translator (free version) to obtain transcriptional regulatory relationships from the TRRUST database and construct a hub gene-transcription factor relationship network. Results: A total of 42 common genes were screened from AD and CR genes, mainly involving signaling pathways such as neuroactive ligand-receptor interactions. A total of 10 pivotal genes were screened from the common genes of CR and AD, which were statistically significant in the comparison of AD and control groups (p < 0.001), and ROC analysis showed that all these pivotal genes had good diagnostic significance. A total of 36 TFs of pivotal genes were obtained. Conclusion: We identified AD- and CR-related signaling pathways and 10 hub genes and found strong associations between these related genes and biological processes such as inflammation.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3