Lung nodule detection using Eyrie Flock-based Deep Convolutional Neural Network

Author:

Gedam Ajit Narendra1,Ajalkar Deepika A.2,Rumale Aniruddha S.3

Affiliation:

1. Computer Science and Engineering, G. H. Raisoni University, Amravati, Maharashtra, India

2. Head of the Department, CSE (Cyber Security and Data Science) GHRCM, Pune associated with G. H. Raisoni University, Amravati, Maharashtra, India

3. Information Technology, Sandip Foundation’s, Sandip Institute of Technology and Research Centre, Nashik, Maharashtra, India

Abstract

PROBLEM: Lung cancer is a dangerous and deadly disease with high mortality and reduced survival rates. However, the lung nodule diagnosis performance is limited by its heterogeneity in terms of texture, shape, and intensity. Furthermore, the high degree of resemblance between the lung nodules and the tissues that surround the lung nodules makes the building of a reliable detection model more difficult. Moreover, there are several methods for diagnosing and grading lung nodules; still, the accuracy of detection with the variations in intensity is a challenging task. AIM & METHODS: For the detection of lung nodules and grading, this research proposes an Eyrie Flock Optimization-based Deep Convolutional Neural Network (Eyrie Flock-DeepCNN). The proposed Eyrie Flock Optimization integrates the fishing characteristics of Eyrie’s and the flocking characteristics of Tusker to accelerate the convergence speed which inturns enhance the training process and improve the generalization performance of the DeepCNN model. In the Eyrie Flock optimization, two optimal issues are considered: (i) segmenting the lung nodule and (ii) fine-tuning hyperparameters of Deep CNN. RESULTS: The capability of the newly developed method is evaluated by the terms of Specificity, Sensitivity, and Accuracy, attaining 98.96%, 95.21%, and 94.12%, respectively. CONCLUSION: Efficiently utilized the Deep CNN along with the help of the Eyrie Flock optimization algorithm which enhances the efficiency of the classifier and convergence of the model.

Publisher

IOS Press

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3