Residual SwinV2 transformer coordinate attention network for image super resolution

Author:

Lei Yushi1,Zhu Zhengwei1,Qin Yilin2,Zhu Chenyang3,Zhu Yanping1

Affiliation:

1. School of Microelectronics and Control Engineering, Changzhou University, China

2. Changzhou Technical Institute of Tourism and Commerce, China

3. School of Computer Science and Artificial Intelligence, Changzhou University, China

Abstract

Swin Transformers have been designed and used in various image super-resolution (SR) applications. One of the recent image restoration methods is RSTCANet, which combines Swin Transformer with Channel Attention. However, for some channels of images that may carry less useful information or noise, Channel Attention cannot automatically learn the insignificance of these channels. Instead, it tries to enhance their expression capability by adjusting the weights. It may lead to excessive focus on noise information while neglecting more essential features. In this paper, we propose a new image SR method, RSVTCANet, based on an extension of Swin2SR. Specifically, to effectively gather global information for the channel of images, we modify the Residual SwinV2 Transformer blocks in Swin2SR by introducing the coordinate attention for each two successive SwinV2 Transformer Layers (S2TL) and replacing Multi-head Self-Attention (MSA) with Efficient Multi-head Self-Attention version 2 (EMSAv2) to employ the resulting residual SwinV2 Transformer coordinate attention blocks (RSVTCABs) for feature extraction. Additionally, to improve the generalization of RSVTCANet during training, we apply an optimized RandAugment for data augmentation on the training dataset. Extensive experimental results show that RSVTCANet outperforms the recent image SR method regarding visual quality and measures such as PSNR and SSIM.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3