In silico analyses of blood flow and oxygen transport in human micro-veins and valves

Author:

Rajeeva Pandian Navaneeth Krishna1,Jain Abhishek123

Affiliation:

1. Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA

2. Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, USA

3. Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, USA

Abstract

BACKGROUND: Almost 95% of the venous valves are micron scale found in veins smaller than 300μm diameter. The fluid dynamics of blood flow and transport through these micro venous valves and their contribution to thrombosis is not yet well understood or characterized due to difficulty in making direct measurements in murine models. OBJECTIVE: The unique flow patterns that may arise in physiological and pathological non-actuating micro venous valves are predicted. METHODS: Computational fluid and transport simulations are used to model blood flow and oxygen gradients in a microfluidic vein. RESULTS: The model successfully recreates the typical non-Newtonian vortical flow within the valve cusps seen in preclinical experimental models and in clinic. The analysis further reveals variation in the vortex strengths due to temporal changes in blood flow. The cusp oxygen is typically low from the main lumen, and it is regulated by systemic venous flow. CONCLUSIONS: The analysis leads to a clinically-relevant hypothesis that micro venous valves may not create a hypoxic environment needed for endothelial inflammation, which is one of the main causes of thrombosis. However, incompetent micro venous valves are still locations for complex fluid dynamics of blood leading to low shear regions that may contribute to thrombosis through other pathways.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3