Brain tumor segmentation based on the U-NET+⁣+ network with efficientnet encoder

Author:

Chen Yunyi121,Quan Lan341,Long Chao5,Chen Yuxuan12,Zu Li16,Huang Chenxi1

Affiliation:

1. Key Open Project of Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Haikou, Hainan, China

2. Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, Fujian, China

3. Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

4. Xiamen Key Laboratory of Brain Center, Xiamen, Fujian, China

5. School of Graduate Studies, La Consolacion University Philippines, Malolos, Philippines

6. College of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan, China

Abstract

BACKGROUND: Brain tumor is a highly destructive, aggressive, and fatal disease. The presence of brain tumors can disrupt the brain’s ability to control body movements, consciousness, sensations, thoughts, speech, and memory. Brain tumors are often accompanied by symptoms like epilepsy, headaches, and sensory loss, leading to varying degrees of cognitive impairment in affected patients. OBJECTIVE: The study goal is to develop an effective method to detect and segment brain tumor with high accurancy. METHODS: This paper proposes a novel U-Net+⁣+ network using EfficientNet as the encoder to segment brain tumors based on MRI images. We adjust the original U-Net+⁣+ model by removing the dense skip connections between sub-networks to simplify computational complexity and improve model efficiency, while the connections of feature maps at the same resolution level are retained to bridge the semantic gap. RESULTS: The proposed segmentation model is trained and tested on Kaggle’s LGG brain tumor dataset, which obtains a satisfying performance with a Dice coefficient of 0.9180. CONCLUSION: This paper conducts research on brain tumor segmentation, using the U-Net+⁣+ network with EfficientNet as an encoder to segment brain tumors based on MRI images. We adjust the original U-Net+⁣+ model to simplify calculations and maintains rich semantic spatial features at the same time. Multiple loss functions are compared in this study and their effectiveness are discussed. The experimental results shows the model achieves a high segmention result with Dice coefficient of 0.9180.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3