Correlation between X-ray tube current exposure time and X-ray photon number in GATE

Author:

Romero Ignacio O.1,Fang Yile1,Li Changqing1

Affiliation:

1. Department of Bioengineering, University of California Merced, Merced, CA, USA

Abstract

BACKGROUND: X-ray image quality relies heavily on the emitted X-ray photon number which depends on X-ray tube current and exposure time. To accurately estimate the absorbed dose in an imaging protocol, it is better to simulate the X-ray imaging with a Monte Carlo platform such as GATE (Geant4 Application for Tomographic Emission). Although input of GATE is the X-ray photon number of the simulated X-ray tube, it lacks a good way to setup the photon number for a desired X-ray tube current setting. OBJECTIVE: To provide a method to correlate the experimental X-ray tube current exposure time and the X-ray photon number in GATE. METHODS: The accumulated radiation dose of a micro-computed tomography (CT) X-ray tube was recorded at different current exposure times with a general-purpose ion chamber. GATE was used to model the experimental microCT imaging system and calculate the total absorbed dose (cGy) in the sensitive volume of the ion chamber with different X-ray photon numbers. Linear regression models are used to establish a correlation between the estimated X-ray photon number and the X-ray tube settings. At first, one model establishes the relationship between the experimentally measured dose and the X-ray tube setting. Then, another model establishes a relationship between the simulated dose and the X-ray number in GATE. At last, by correlating these two models, a regression model to estimate the X-ray output number from an experimental X-ray tube setting (mAs) is obtained. RESULTS: For a typical micro-CT scan, the X-ray tube is operated at 50 kVp and 0.5 mA for a 500 ms exposure time per projection (0.25 mAs). For these X-ray imaging parameters, the X-ray number per projection is estimated to be 3.613×106 with 1.0 mm Al filter. CONCLUSION: The findings of this work provide an approach to correlate the experimental X-ray tube current exposure time to the X-ray photon number in the GATE simulation of the X-ray tube to more accurately determine radiation dose for an imaging protocol.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3