MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3

Author:

Xu Wei1,Qian Lei1,Yuan Xiaoyan1,Lu Yong1

Affiliation:

1. Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China

Abstract

BACKGROUND: MicroRNAs (miRNAs) have emerged as crucial players in the initiation and development of atherosclerosis (AS), and the low miR-223-3p level is observed in AS patients. However, the function and mechanism behind miR-223-3p in AS progression have not been fully elucidated. METHOD: In the present study, THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL) were employed as the cell model of AS. The expression levels of miR-223-3p, NLR family pyrin domain containing 3 (NLRP3), caspase-1, pro-caspase-1, cleaved interleukin 18 (IL-18), cleaved IL-1β, and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB) analyses. The relationship between miR-223-3p and FOXO3 or NLRP3 was determined using a dual-luciferase reporter assay. The production of IL-1β, IL-18, IL-6, and TNF-α was examined by Enzyme-linked immunosorbent assay (ELISA). RESULTS: MiR-223-3p was decreased in AS patients and ox-LDL-induced THP-1 cells, and its upregulation downregulated the abundance of NLRP3, caspase-1, cleaved IL-18, cleaved IL-1β, IL-1β, IL-6, and TNF-α in THP-1 cells treated with ox-LDL or not, and the depletion of miR-223-3p revealed an opposite phenomenon. NLPR3 and FOXO3 were identified as two authentic targets of miR-223-3p. Knockdown of NLRP3 or FOXO3 reversed the stimulatory effect of the miR-223-3p inhibitor on the inflammatory responses of THP-1 cells. CONCLUSIONS: Our data indicate that miR-223-3p inhibited ox-LDL-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3 in THP-1 cells, which offered a prospective therapeutic target for AS therapy.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3