Finding repeatable progressive pass clusters and application in international football

Author:

Deb Bikash12,Fernandez-Navarro Javier2,McRobert Allistair P.2,Jarman Ian3

Affiliation:

1. Performance Analysis and Insight, The Football Association, Burton-on-Trent, UK

2. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK

3. School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK

Abstract

Progressive passing in football (soccer) is a key aspect in creating positive possession outcomes. Whilst this is well established, there is not a consistent way to describe the different types of progressive passes. We expand on the previous literature, providing a complete methodological approach to progressive pass clustering from selection of the number of clusters (k) to risk-reward profiling of these progressive pass types. In this paper the Separation and Concordance (SeCo) framework is utilised to provide a process to analyse k-means clustering solutions in a more repeatable way. The results demonstrate that we can find stable progressive pass clusters in International Football and their efficacy with progressive passes “Mid Central to Mid Half Space” in build-up and “Mid Half Space to Final Central” into the final 3rd having the best balance between risk (turnover) and reward (shot created) in the subsequent possession. This allowed for opposition profiling of player and team patterns in different phases of play, with a case study presented for the teams in the Last 16 of the 2022 World Cup.

Publisher

IOS Press

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3