Dual-Task Costs of Quantitative Gait Parameters While Walking and Turning in People with Parkinson’s Disease: Beyond Gait Speed

Author:

Vitorio Rodrigo1,Hasegawa Naoya1,Carlson-Kuhta Patricia1,Nutt John G.1,Horak Fay B.1,Mancini Martina1,Shah Vrutangkumar V.1

Affiliation:

1. Department of Neurology, Oregon Health & Science University, Portland, OR, USA

Abstract

Background: There is a lack of recommendations for selecting the most appropriate gait measures of Parkinson’s disease (PD)-specific dual-task costs to use in clinical practice and research. Objective: We aimed to identify measures of dual-task costs of gait and turning that best discriminate performance in people with PD from healthy individuals. We also investigated the relationship between the most discriminative measures of dual-task costs of gait and turning with disease severity and disease duration. Methods: People with mild-to-moderate PD (n = 144) and age-matched healthy individuals (n = 79) wore 8 inertial sensors while walking under single and dual-task (reciting every other letter of the alphabet) conditions. Outcome measures included 26 objective measures within four gait domains (upper/lower body, turning and variability). The area under the curve (AUC) from the receiver-operator characteristic plot was calculated to compare discriminative ability of dual-task costs on gait across outcome measures. Results: PD-specific, dual-task interference was identified for arm range of motion, foot strike angle, turn velocity and turn duration. Arm range of motion (AUC = 0.73) and foot strike angle (AUC = 0.68) had the largest AUCs across dual-task costs measures and they were associated with disease severity and/or disease duration. In contrast, the most commonly used dual-task gait measure, gait speed, showed an AUC of only 0.54. Conclusion: Findings suggest that people with PD rely more than healthy individuals on executive-attentional resources to control arm swing, foot strike, and turning, but not gait speed. The dual-task costs of arm range of motion best discriminated people with PD from healthy individuals.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3