Global field of view-based pixel-level recognition method for medical images

Author:

He Keke1,Tang Haojun2,Gou Fangfang3,Wu Jia24

Affiliation:

1. School of Computer Science and Engineering, Changsha University, Changsha, China

2. School of Computer Science and Engineering, Central South University, ChangSha, China

3. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China

4. Research Center for Artificial Intelligence, Monash University, Melbourne, Australia

Abstract

Artificial intelligence image processing has been of interest to research investigators in tumor identification and determination. Magnetic resonance imaging for clinical detection is the technique of choice for identifying tumors because of its advantages such as accurate localization with tomography in any orientation. Nevertheless, owing to the complexity of the images and the heterogeneity of the tumors, existing methodologies have insufficient field of view and require expensive computations to capture semantic information in the view, rendering them lacking in universality of application. Consequently, this thesis developed a medical image segmentation algorithm based on global field of view attention network (GVANet). It focuses on replacing the original convolution with a transformer structure and views in a larger field-of-view domain to build a global view at each layer, which captures the refined pixel information and category information in the region of interest with fewer parameters so as to address the defective tumor edge segmentation problem. The dissertation exploits the pixel-level information of the input image, the category information of the tumor region and the normal tissue region to segment the MRI image and assign weights to the pixel representatives. This medical image recognition algorithm enables to undertake the ambiguous tumor edge segmentation task with low computational complexity and to maximize the segmentation accuracy and model property. Nearly four thousand MRI images from the Monash University Research Center for Artificial Intelligence were applied for the experiments. The outcome indicates that the approach obtains outstanding classification capability on the data set. Both the mask (IoU) and DSC quality were improved by 7.6% and 6.3% over the strong baseline.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3