Cuproptosis and physical training: A review

Author:

Kordi Negin1,Saydi Ali1,Azimi Maliheh2,Mazdarani Farivar3,Gadruni Keivan456,Jung Friedrich7,Karami Sajad8

Affiliation:

1. Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran

2. Faculty of Physical Education, Shahrood University of Technology, Shahrood, Iran

3. Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran

4. Faculty of Physical Education, University of Tabriz, Tabriz, Iran

5. Kurdistan Education Office, Ministry of Education, Kurdistan, Iran

6. Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran

7. Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany

8. Faculty of Physical Education and Sport Science, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

Copper is an essential element in the human body, involved in many physiological and metabolic functions, including coagulation, oxidative metabolism, and hormone production. The maintenance of copper homeostasis within cells is a complex procedure that is intrinsically controlled by a multitude of intricate mechanisms. Disorders of copper homeostasis encompass a wide range of pathological conditions, including degenerative neurological diseases, metabolic disorders, cardio-cerebrovascular diseases, and tumors. Cuproptosis, a recently identified non-apoptotic mode of cell death mode, is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis represents a novel form of cell death distinct from the previously described modes, including apoptosis, necrosis, pyroptosis, and ferroptosis. Excess copper has been shown to induce cuproptosis by stimulating protein toxic stress responses via copper-dependent abnormal oligomerization of lipoylation proteins within the tricarboxylic acid cycle and the subsequent reduction of iron-sulfur cluster protein levels. Ferredoxin1 facilitates the lipoacylation of dihydrolipoyl transacetylase, which in turn degrades iron-sulfur cluster proteins by reducing Cu2+ to Cu+, thereby inducing cell death. Furthermore, copper homeostasis is regulated by the copper transporter, and disturbances in this homeostasis result in cuproptosis. Current evidence suggests that cuproptosis plays an important role in the onset and development of several cardiovascular diseases. Copper-chelating agents, including ammonium tetrathiomolybdate (VI) and DL-penicillamine, have been shown to facilitate the alleviation of cardiovascular disease by inhibiting cuproptosis. It is hypothesized that oxidative phosphorylation inhibitors such as physical training may inhibit cuproptosis by inhibiting the protein stress response. In conclusion, the implementation of physical training may be a viable strategy to reducte the incidence of cuproptosis.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3