Urokinase plasminogen activator independent early experimental thrombus resolution: MMP2 as an alternative mechanism

Author:

Sood Vikram,Luke Catherine E.,Baldwin Joseph,Miller Erin M.,Elfline Megan,Upchurch Gilbert R.,Wakefield Thomas W.,Henke Peter K.

Abstract

SummaryDeep-vein thrombosis (DVT) resolution is thought to be primarily a urokinase plasminogen activator (uPA) -dependent mechanism, although observations suggest other non-fibrinolytic mechanisms may exist. We explored the role of matrix metalloproteinase (MMP) -2 and –9 in early DVT resolution in uPA-deficient mice. Male B6/SVEV (WT) and genetically matched uPA -/- mice underwent inferior vena cava (IVC) ligation to create stasis venous thrombi, with IVC and thrombus harvest. Thrombus size was similar between WT and uPA -/- mice at day 4, suggesting early non uPA-dependent resolution. Intrathrombus neutrophils and monocytes were reduced 3- and 3.5-fold in uPA -/- mice as compared with WT. By ELISA, tumour necrosis factor α and interleukin 1β were not altered, while interferon (IFN)γ was significantly elevated in uPA -/- mice. A compensatory increase in thrombus tPA was not observed, plasmin activity was reduced and PAI-1 was elevated 2.5-fold in uPA -/- mice. Active MMP2, but not MMP9, was elevated 3-fold in uPA-/- mice as compared with WT as well as MMP-14, an MMP2 activator. Collagen type IV and fibrinogen were reduced in uPA -/- mice thrombi as compared with WT. IFNγ induces MMP2, and blockade of IFNγ was associated with larger venous thrombi and reduced active MMP2, as compared with WT. Consistently, MMP2 -/- mice had larger VT as compared with WT controls, despite normal thrombus plasmin levels. Taken together, early experimental venous thrombus resolution is independent of uPA, and, in part, inflammatory cell influx. MMP2-dependent thrombolysis is an important compensatory mechanism of venous thrombus resolution, possibly by collagen type IV metabolism, and may represent an exploitable therapeutic avenue.

Funder

SVS Lifeline Student Research Fellowship

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3