Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis

Author:

Varma Manu,Moaveni Daria,Dewyer Nicholas,Moore Andrea,Lynch Erin,Longo Christopher,Deatrick Barry,Kunkel Steven,Upchurch Gilbert,Wakefield Thomas,Henke Peter

Abstract

SummaryVessel wall matrix changes occur after injury, although this has not been well studied in the venous system. This study tested the hypothesis that the thrombus dictates the vein wall response and vein wall damage is directly related to the duration of thrombus contact. To determine the injury response over time, rats underwent inferior vena cava (IVC) ligation to produce a stasis thrombus, with harvest at various time points to 28 days (d). Significant vein wall matrix changes occurred with biomechanical injury (stiffness) peaking at 7–14 d, with concurrent early reduction in total collagen, an increase in early matrix metalloproteinase (MMP)-9 and late MMP-2, and concomitant increase in tumor necrosis factor (TNF)α, monocyte chemoattractant( MCP)-1 and tumor growth factor (TGF)β (all P <0.05). To isolate the effect of the thrombus and its mechanism of genesis, rats underwent 7 d or limited stasis (24 hours), non-stasis thrombosis, or non-thrombotic IVC occlusion (Silicone plug). Vein wall stiffness was increased seven-fold, with a five-fold reduction in collagen, and 5.5- to seven-fold increase in TNFα, MCP-1, and TGFβ with 7 d stasis as compared with controls (all P <0.05). By Picosirus red staining analysis, collagenolysis was significantly greater with 7 d stasis injury (P = 0.01) but neither MMP-9 nor MMP-2 activity correlated with injury mechanism. In addition, vein wall cellular proliferation and uPA gene expression paralled the stasis thrombotic injury. Limited stasis, non-stasis thrombosis and non-thrombotic IVC occlusion showed a lesser inflammatory response. These data suggest both a static component and the thrombus directs vein wall injury via multiple mechanisms.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3