Partial and Complete Fluid Replacement Maintains Exercise Performance in a Warm Environment Following Prolonged Cold-Water Immersion

Author:

Wheelock Courtney E.1ORCID,Stooks Jocelyn1,Schwob Jacqueline1,Hess Hayden W.2,Pryor Riana R.1,Hostler David1

Affiliation:

1. Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York

2. Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana

Abstract

Abstract Wheelock, CE, Stooks, J, Schwob, J, Hess, HW, Pryor, RR, and Hostler, D. Partial and complete fluid replacement maintains exercise performance in a warm environment following prolonged cold-water immersion. J Strength Cond Res 38(2): 290–296, 2024—Special warfare operators may be exposed to prolonged immersion before beginning a land-based mission. This immersion will result in substantial hypohydration because of diuresis. This study tested the hypothesis that both partial and full postimmersion rehydration would maintain performance during exercise in the heat. Seven men (23 ± 2 years; V̇o 2max: 50.8 ± 5.3 ml·kg−1·min−1) completed a control trial (CON) without prior immersion and 3 immersion (18.0°C) trials without rehydration (NO) or with partial (HALF) or full (FULL) rehydration. After immersion, subjects completed a 60-minute weighted ruck march (20.4 kg; 5.6 kph) and a 15-minute intermittent exercise protocol (iEPT) in a warm environment (30.0°C and 50.0% relative humidity). The primary outcome was distance (km) covered during the iEPT. A priori statistical significance was set to p ≤ 0.05. Immersion resulted in 2.3 ± 0.4% loss of body mass in all immersion trials (p < 0.01). Distance covered during the first 13-minute interval run portion of iEPT was reduced in the NO rehydration trial (1.59 ± 0.18 km) compared with all other conditions (CON: 1.88 ± 0.18 km, p = 0.03; HALF: 1.80 ± 0.18 km, p < 0.01; FULL: 1.86 ± 0.28 km, p = 0.01). During the final 2 minutes of the iEPT, distance in the NO rehydration trial (0.31 ± 0.07 km) was reduced compared with the FULL rehydration trial (0.37 ± 0.07 km; p < 0.01) but not compared with CON (0.35 ± 0.07 km; p = 0.09) or HALF (0.35 ± 0.07 km; p = 0.08). Both partial and full postimmersion fluid replacement maintained intermittent exercise performance and should be applied as rehydration strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

Reference35 articles.

1. The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test);Aldous;J Strength Cond Res,2014

2. Hot and hypoxic environments inhibit simulated soccer performance and exacerbate performance decrements when combined;Aldous;Front Physiol,2015

3. The effect of pre-cooling intensity on cooling efficiency and exercise performance;Bogerd;J Sports Sci,2010

4. Haemodynamic changes after prolonged water immersion;Boussuges;J Sports Sci,2009

5. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure;Castellani;Auton Neurosci,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3