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Hearing loss is caused by a variety of genetic and environmental factors, with inherited causes assumed to account for 50% to 60%.
Mutations in mitochondrial DNA (mtDNA) 12S rRNA, especially the m.1555A>G mutation, are the most common molecular
cause for nonsyndromic sensorineural hearing loss and aminoglycoside-induced deafness. The spectra of this gene varies among
different ethnic populations. In current review, the m.1555A >G mutation of 12S rRNA decoding gene was compared in different
populations for ethnic-specific allele frequency and their contribution to genetic hearing loss. Differences in the distribution
of mutation to diverse regions of the world showed that it occurred from the ancestors of each ancestral generation and in
immigrant populations at different time periods. Furthermore, we also include the functional studies of this mtDNA variation
in the etiologies of aminoglycoside-induced hearing loss. Carriers of the mutation (m.1555A>G) should avoid aminoglycosides
and use alternatives for antibiotic therapy to avoid the possibility of drug-induced hearing loss. Comprehensive summary of
the m.1555A>G mutation can help provide scientific basis for disease diagnosis and consultation for hearing loss and develop

optimal therapeutic strategies for deaf patients.
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Introduction

Hearing loss (HL) is one of the most common sen-
sory deficits in human beings. Current studies have shown
that one per 1000 newborns has congenital hearing prob-
lem [1,2]. It is estimated that approximately 50-60% of
HL are caused by genetic factors [3]. Among them, non-
syndromic hearing loss (NSHL) with hearing impairment
as the only significant clinical feature accounts for about
70%, whereas the remaining 30% is syndromic hearing
loss (SHL) accompanied by other abnormalities [4]. Ge-
netic hearing loss of non-syndromic form can follow a pat-
tern of autosomal recessive (DFNB), autosomal dominant
(DFNA), mitochondrial inheritance and X-linked recessive
[1]. NSHL is genetically very heterogeneous. To date, ac-
cording to the website (https://hereditaryhearingloss.org/),
about 110 genes with more than 1000 mutations and 150
loci were found to be associated with NSHL. Interestingly,
the most common genes detected in NSHL are SLC26A4,
GJB2, GJB3, and mtDNA 12S rRNA [5-7].

Although most cases of NSHL are caused by muta-
tions in nuclear genes, it is clear that mitochondrial pathol-
ogy is also important both in inherited and acquired hear-
ing loss [8,9]. Of note, the first genetic defect associ-
ated with NSHL is a mitochondrial alteration detected by
Prezant et al. [10] in 1993. Based on the website (http:
/lwww.mitomap.org, 2020), over 100 mitochondrial alter-

ations in coding and control regions have been found to be
associated with hearing loss. Several mtDNA alterations
leading to NSHL have been reported, of which the MT-
RNRI gene encoding 12S rRNA is a hot spot for variants
causing NSHL. Especially, the most common mutation of
mtDNA 12S rRNA is m.1555A>G, which is well known to
be related to aminoglycoside-induced NSHL in individuals
from different races [11-13].

The m.1555A>G mutation, an mtDNA mutation
firstly identified as a cause of maternally inherited hearing
impairment, has been associated with extremely variable
phenotypes [14,15]. The phenotypes of the m.1555A>G
mutation vary from normal hearing with same maternal lin-
eage, moderate progressive hearing loss, and severe deaf-
ness. The incomplete penetration and varied expressivity of
hearing loss related to the m.1555A >G mutation are associ-
ated with the modified nuclear genes, mitochondrial haplo-
type, interaction among genetic factors, and environmental
factors such as aminoglycosides [16].

In this study, the evidences of genetic association be-
tween the m.1555A>G mutation in M7T-RNRI gene and
NSHL-related phenotypes were reviewed. Furthermore,
functional studies of this mtDNA variation were included
in the etiologies of aminoglycoside-induced hearing loss.
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Table 1. The prevalence of m.1555A>G in the M7T-RNR1 gene associated with hearing disorders.

oy

Authors Year of Sample origin Phenotype Detection method Range of Sample size Mutation Reference
publication ages (years) frequency (%)
Asia
Allele-specific
Fischel-Ghodsian et al. 1993 Chinese Deaf after aminoglycoside exposure oligonucleotide 13-21 36 2.78 [17]
hybridization
Tamagawa et al. 1996 Japanese Bilateral sensorineural hearing loss PCR-RFLP 43-65 7 14.3 [18]
Pandya et al. 1999 Mongolia Deafness PCR-RFLP NA 480 7.7 [19]
Usami et al. 2000 Japanese SNHL/Profound hearing loss PCR-RFLP 3-92/NA 319/140 3.45/10 [13]
Tono et al. 2001 Japanese Post-lingual non-syndromic deafness PCR-RFLP 14-84 68 5.88 [33]
Malik et al. 2003 Southeast Asian Non-syndromic sensorineural deafness PCR-RFLP 643 75 5.33 [49]
Tekin et al. 2003 Turkey Pre-lingual sensorineural non-syndromic deafness PCR-RFLP NA 168 1.79 [36]
Noguchi et al. 2004 Japanese NSHL Sequencing 677 138 5.07 [34]
Lietal 2005 Chinese Aminoglycoside-induced/NSHL Sequencing 7-17 128 13/2.9 [32]
Wu et al. 2007 Han Chinese Idiopathic sensorineural hearing loss PCR-RFLP 1-54 315 32 [50]
Liu et al. 2008 Chinese NSHL PCR-RFLP 7-80 290 15.5 [24]
Kato et al. 2010 Japanese Suspected hereditary HL Suspension array 1-77 373 2.9 [35]
Luetal 2010 Han Chinese Aminoglycoside-induced and NSHL Sequencing 1-17 1642 3.96 [37]
Jietal 2011 Chinese NSHL PCR-RFLP 0.3-67 473 1.63 [51]
Chen et al. 2011 Chinese Hearing loss PCR-RFLP NA 813 11.81 [25]
Wei et al. 2013 Chinese NSHL Sequencing 2-45 658 5.93 [52]
Chai et al. 2013 Han Chinese NSHL Sequencing NA 619 4.70 [53]
Duetal. 2014  Chinese (Han/Hui/Uyghur) SNHL Sequencing 1-39/2-28/4-22 1835/306/208 6.05/3.27/1.44 [54]
Jiang et al. 2015 Chinese NSHL Sequencing 5-36 155 3.87 [11]
Subathra et al. 2016 South Indian NSHL PCR-RFLP 6-18 729 0.69 [29]
Luo et al. 2017 Chinese profound NSHL SNP scan assay 0.7-70 535 1.12 [31]
Wu et al. 2018 Chinese NSHL PCR-RFLP 1-3 300 1.67 [55]
Xiang et al. 2019 Chinese NSHL Sequencing and Microarray 0.8-53 506 17.0 [30]
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Table 1. Continued.

Authors Year of Sample origin Phenotype Detection method Range of Sample size Mutation Reference
publication ages (years) frequency (%)
Europe
Lehtonen et al. 2000 Northern Finland SNHI PCR-RFLP NA 117 2.6 [56]
Kupka et al. 2002 Hungarian/Polish/German NSSHI PCR-RFLP 1-73/NA/1-60 56/125/160  1.8/2.4/0.7 [12]
Ostergaard e al. 2002 Denmark NSHI PCR-RFLP 4-67 85 2.4 [57]
del Castillo et al. 2003 Spain NSHL PCR-RFLP NA 649 families 16 [23]
Jacobs et al. 2005 Southern Italy/UK Post-lingual NSHI Sequencing or primer extension NA 128/80 1.56/2.5 [58]
Bravo et al. 2006 Spain NSHL PCR-RFLP NA 54 16.67 [59]
Leveque et al. 2007 France SNHI Sequencing NA 29 families 17.24 [22]
Berrettini et al. 2008 Italy NSHL PCR-RFLP 15-76 167 5.4 [42]
Kokotas et al. 2009 Greece NSHL PCR-RFLP NA 478 0.42 [40]
Rydzanicz et al. 2010 Polish Aminoglycoside-induced and NSHL Sequencing NA 250 3.6 [41]
Kokotas et al. 2011 Greece Deafness PCR-RFLP NA 513 0.4 [39]
America
Lietal. 2004 Caucasian NSHI Sequencing <19 164 0.6 [26]
Abreu-Silva et al. 2006 Brazil HI PCR-RFLP NA 203 2 [43]
Liu et al. 2008 USA NSHL PCR-RFLP 7-80 208 1.9 [24]
Salomao et al. 2013 Brazil Non-syndromic deafness PCR-RFLP 0.3-76 78 1.3 [44]
Africa
Matthijs et al. 1996 Zaire Non-syndromic deafness Sequencing NA 12 families 100 [47]
Mkaouar-Rebai et al. 2006 Tunisian NSHL PCR-RFLP NA 100 families 1 [27]
Nahili et al. 2010 Morocco NSSHL PCR-RFLP NA 84 families 3.6 [45]
Fassad et al. 2014 Egypt NSHL PCR-RFLP 0.1-65 97 1.3 [46]
Mix
Vivero et al. 2012 Ethnically Diverse NSD PCR-RFLP 0.3-80 217 0.9 [38]
Yelverton et al. 2013 Ethnically Diverse Hearing loss with mitochondrial mutation variants Sequencing NA 86 20.9 [48]

Abbreviations: PCR-RFLP, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism; NSHL, Non-syndromic Hearing Loss; NA, Not Available; SNHL, Sensorineural

Hearing Loss; SNHI, Sensorineural Hearing Impairment; NSSHI, Non-syndromic Sensorineural Hearing Impairment; NSD, Non-syndromic Deafness.
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Genetic Studies of the m.1555A>G Mutation

The m.1555A>G mutation was first found in a large
Arab-Israeli family [10]. Subsequently, Fischel-Ghodsian
etal. (1993)[17], Tamagawa et al. (1996)[18], and Pandya
et al. (1999) [19] reported populations with this same vari-
ation and variable degrees of HL. Recent studies showed
that there are ethnic-related differences in the prevalence of
the m.1555A>G mutation in HL-related phenotypes, rang-
ing from 0 to 17.24% [20-22]. In general, the m.1555A>G
variation is a frequent cause of hearing disorders in some
Asian and European populations [23-25]. However, it was
rare or even absent in the American and African population
[26-28] (Table 1, Ref. [11-13,17-19,22-27,29-59]).

Asia

In Asia, the prevalence of HL ranges between 0.69%
and 17.0%, of which the lowest frequency was observed
in a South Indian population [29] while the highest fre-
quency was observed in a Chinese population [30]. Xi-
ang et al. [30] showed that a total of 86 of 506 Chi-
nese harbored m.1555A>G (86/506), which is markedly
higher than the reported 1.12%-13% frequency found in
other regions of China [31,32]. Of note, the severity and
age of onset of hearing loss varied in the 86 Chinese pa-
tients with the m.1555A>G mutation. Due to the geograph-
ical separation in China which has the largest population in
the world, different areas may have different genetic back-
grounds [60]. Recent studies also reported HL frequencies
of 2.9%—-14.3% in Japanese [13,18,33-35] and 1.79% in
Turkish populations [36]. However, in a Chinese popula-
tion, Jiang et al. [21] found that nobody with nonsyndromic
SNHL carried the m.1555A>G mutation. In Zohour’s sur-
vey of an Iranian population, this mutation was not detected
in any of the studied NSHL or control samples (a frequency
0of 0% for each) [61]. The difference in the frequency of mu-
tations among Asian countries explains that the complexity
of'the genetic epidemiology of NSHL is strongly influenced
by the ethnic composition of a particular population [37,38].

Europe

In Europe, the lowest frequency of NSHL associated
with m.1555A>G was observed in a Greek population [39]
and the highest frequency of that was observed in a French
population [22]. The prevalence of this allele varied be-
tween 0.4% and 17.24%.

The m.1555A>G mutation was found in maternally
inherited NSHL families as well as in some patients suf-
fered from hearing loss after the administration of amino-
glycosides. While the fact that none of the 35 syndromic
cases harbor the m.1555A>G mtDNA mutation, Koko-
tas et al. [39,40] reported a frequency of 0.4% which
was similar to other European populations reported. In
addition, Rydzanicz et al. [41] analyzed the entire se-
quence of 12S rRNA gene in 250 Polish patients with
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aminoglycoside-induced hearing loss and NSHL. The inci-
dence of m.1555A>G mutation was estimated to be 3.6%,
within the range previously reported for Europeans. Ad-
ditionally, nine unrelated cases positive for m.1555A>G
were also identified [12,42]. To further study the impact
of m.1555A>G mutation in the Greek population, Kokotas
etal. [39,40] expanded their research from 106 to 478 unre-
lated individuals diagnosed with either pre-lingual or post-
lingual sensorineural, bilateral, non-syndromic, and hear-
ing impairment of any degree. They observed two patients
with the mutation, indicating that m.1555A>G mutation
may be rather uncommon among Greeks. In fact, these
studies are difficult to interpret, due to difference in the pa-
tient’s selection criteria (familial or sporadic cases), with a
higher rate generally reported in familial cases [22,23]. A
true different prevalence or ascertainment might be expla-
nations for this variable frequency.

America

In America, the frequency of the m.1555A>G muta-
tion was investigated to be ranging from 0.6% to 2% [24,
26,43,44]. Liet al. [26] conducted a retrospective database
review and subsequent molecular analysis of 164 pedi-
atric subjects with sporadic non-syndromic deafness at the
Center for Hearing and Deafness Research (CHDR) at the
Cincinnati Children’s Hospital Medical Center (CCHMC).
They showed that the frequency of the m.1555A>G muta-
tion was 0.6% and affected subject was present in homo-
plasmy. By contrast, Liu et al. [24] demonstrated that four
(2%) deaf probands from the USA carries the m.1555A>G
mutation, while all the deaf patients from China were ob-
served to carry this variation. Similarly, in study made
in San Paulo, Brazil, 2% of the individuals with NSHL
have the m.1555A>G mutation [43]. Additionally, among
southern Brazilians, Salomao et al. [44] reported a fre-
quency of 1.3% in people with NSHL with negative re-
sult for the 167delT, 35delG, and 235delC mutations in the
gap junction protein beta 2 gene (GJB2). However, the
m.1555A>G mutation was not found in another Brazilian
study with 27 deaf subjects [62]. In another population,
15% of the hearing loss patients who had received antibi-
otics containing amino-group, have the m.1555A>G muta-
tion [63].

Africa

In Africa, the m.1555A>G variant is observed in
around 1%—3% of HL [27,45,46]. The allele frequencies
in those populations were derived by screening both pre-
lingual and post-lingual hearing impairment with or without
exposure of aminoglycoside antibiotic. Mkaouar-Rebai et
al. [27] described the first Tunisian family with NSHL car-
rying the m.1555A>G mutation among 100 families tested.
This mutation was observed to occur both in patient with
congenital hearing loss (V.3 and V.4) and in individuals
with normal hearing (V.1 and V.2). The phenotypic vari-
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ability reported in patients with Tunisian pedigree implied
that the nuclear modifier genes are involved in the devel-
opment of deafness. Thereafter, the m.1555A>G mutation
was first described in Moroccan and Egyptians patient with
NSHL. It should be noted that the 1555 A to G mutation
was found in all deaf persons as well as their siblings tested
in Matthijs’s study. Additionally, this mutation was homo-
plasmic in all maternally related members [47]. It is likely
that all the families involved originated from a small village
in Zaire, in which deafness affected the maternal lineage for
several generations, hinting at mtDNA mutations.

Mix

Vivero et al. [38] screened 217 ethnically diverse
probands for mtDNA mutation, in which 117 were whites
of European ancestry, 70 were whites Hispanic/Latinos,
16 were African Americans, 11 were Asians, two were
of Middle Eastern descent and one Portuguese. Of the
total probands screened, two was observed to have the
m.1555A>G mutation (2/217). The first one was a white
female with 80-year-old suffered from progressive HL
which occurred at the age of 40, and the second one was
a Hispanic woman with a history of childhood aminoglyco-
side exposure. Despite mtDNA mutation rates were higher
than expected in some Asian populations, none of the 11
Asian patients tested in the study of Vivero et al. [38] car-
ried the m.1555A>G mutation. In addition, Samanich et
al. [64] did not identify any of 109 predominantly sim-
plex African American (AA) and Caribbean Hispanic (CH)
individual with the m.1555A>G mutation. However, in
the largest cohort of 86 patients described in an American
population possessing mitochondrial mutations, 18 cases
were m.1555A>G [48]. Subjects with this mutation had
the highest family history and the most severe hearing loss.
Regarding to ethnicity, Western European, Asian and His-
panic decent were the main subjects, while no Eastern Eu-
ropean proband carries the m.1555A>G mutation.

Functional Studies of the m.1555A >G Mutation

The m.1555A>G mutation, which located in domain
of mitochondrial 12S rRNA with a high degree of conser-
vation, may affect its secondary structure. Bacterial studies
have shown that this domain of the molecule is part of the
aminoacyl site in which mRNA is decoded and lies at the
ribosomal subunit interface [65-67]. Specifically, a new
pair of C-G bases appears in the human 12S rRNA gene
due to the m.1555A>G mutation, making it similar to the
corresponding region of the Escherichia coli 16S rRNA
gene [68]. While aminoglycoside-linkage results in pro-
tein translation errors by binding to this decoding region
and subsequently in bacterial death, this mutation increases
susceptibility to the effects of antibiotics on translational fi-
delity. This may explain the aminoglycoside-induced hear-
ing loss in individuals who have this mutation [32,68].
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Based on the accumulating genetic evidence as sum-
marized above, we hypothesize that deafness inherited fam-
ilies carrying the m.1555A>G mutation have something
wrong with the mitochondrion. In addition, researchers
demonstrated that the use of aminoglycoside antibiotics is
capable of inducing or aggravating hearing loss, and deaf-
ness varies in severity and age of onset among subjects
without aminoglycoside exposure [69-73]. Patients carry-
ing the m.1555A >G mutation can show various phenotypic
variation [74-76]. For instance, some Chinese pedigrees
with this mutation showed vary low penetrance of hear-
ing loss [75—77], while others showed the contrary [78]. It
may be indued by nuclear modifier genes as well as many
other environmental factors. But what is really the effect of
aminoglycoside antibiotics on hearing loss persons carrying
the m.1555A>G mutation?

Aminoglycoside antibiotic are common clinical drugs
which were often used to treat gram-negative bacterial in-
fections that do not respond to conventional antibiotics.
They may exert their effects by binding directly to the base
pairs C1409-G1491 at the A-site of bacterial 16S rRNA,
which serves as a crucial part of the decoding site. This in-
teraction could result in premature termination of protein
synthesis or protein mistranslation [79-81]. As a matter
of fact, mitochondria ribosome of eukaryotes are similar to
bacterial ribosomes. The A-to-G substitution in the amino-
glycoside binding site in 16S rRNA in mammalian mito-
chondrial ribosomes may lead to the significantly reduced
toxicity of aminoglycosides in eukaryotic cells. The A nu-
cleotide at position 1555 in the 12S rRNA gene located in
human mitochondria is similar to position 1491 in the 16S
rRNA gene located in wild-type E. coli [82]. When 1555A
was mutated to G, the secondary structure of 12S rRNA was
similar to the corresponding region of 16S rRNA in E. coli.
Therefore, it was presumed that this newly formed G-C pair
gives rise to an aminoglycoside binding site (Fig. 1). In
fact, Guan et al. [14] reported that the m.1555A>G muta-
tion changes the binding property of aminoglycoside at the
A-site of rRNA and results in a conformational change in
12S rRNA.

Overall, mutation in the mitochondrial 12S rRNA
(e.g., m.1555A>G) induces defects in synthesis of mito-
chondrial protein, and aminoglycoside which concentrated
selectively in the cochlea and vestibular exacerbate these
defects. The translational defect result in the apoptosis of
hair cells in the cochlea and vestibular system. However,
the human cochlea has only about 5000 hair cells and do not
have the ability to repair itself. Genetic defects may cause
abnormal hair cells at birth, resulting in deafness-related
phenotypes. In addition, mutations in nuclear-encoded
modifier genes (e.g., MTO1, GTPBP3, TRMU) and many
other environmental factors including aging, noise, and so
on are capable of aggravating the phenotype of hearing im-
pairment.
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Fig. 1. Conformational changes of human mitochondrial 12S rRNA predicted by the m.1555A >G mutation. (A) Part of secondary
structure of E. coli 16S rRNA with A-site. (B) The corresponding region of human mitochondrial 12S rRNA (wild-type). (C) 12S rRNA

carrying the m.1555A>G mutation (mutant-type).

Conclusions

In current study, we presented several lines of evi-
dences that support the m.1555A >G mutation on MT-RNR 1
gene to be associated with hearing impairment. A mul-
titude of genetic studies analyzing various hearing loss-
associated phenotypes have implicated crucial roles of the
m.1555A>G mutation. Differences in the distribution of
mutations in distinct regions of the world suggests that it
occurred in each generation of ancestors and in different
periods of immigrant populations. Despite inconsistent re-
sults, it remains important to study the genetics of hear-
ing loss in different populations. Differences in genetic
structure and allele frequencies across ethnic groups can
help determine the exact role of this mutation around the
world. Furthermore, the m.1555A>G mutation in the 12S
rRNA gene is a molecular mechanism of aminoglycoside
ototoxicity-related deafness. To mitigate the negative ef-
fect of aminoglycoside, we are capable of predicting indi-
vidual’s risk of ototoxicity by evaluating their pedigree or
screening their 12S rRNA gene before use of these drugs.
Carriers of the m.1555A>G mutation should avoid expo-
sure to aminoglycoside and should be treated with alterna-
tive antibiotic to avoid the possibility of drug-induced hear-
ing loss. It should be noted that mtDNA deafness-causing
mutations (e.g., m.1555A>G) are not the only major risk
factors; other genetic or environmental factors may be work
together to cause sensorineural hearing disorders.
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