The gut wall provides an effective barrier against nanoparticle uptake

Author:

Sinnecker Heike,Krause Thorsten,Koelling Sabine,Lautenschläger Ingmar,Frey Andreas

Abstract

Background: The omnipresence of nanoparticles (NPs) in numerous goods has led to a constant risk of exposure and inadvertent uptake for humans. This situation calls for thorough investigation of the consequences of NP intake. As the vast mucosa of the human gastrointestinal tract represents an attractive site of entry, we wanted to take a look on the fate that ingested NPs suffer in the gut. As a model to investigate NP uptake we used the isolated perfused rat small intestine. Differently sized fluorescent latex particles were used as exemplary anthropogenic NPs.Results: The particles were administered as bolus into the isolated intestine, and samples from the luminal, vascular and lymphatic compartments were collected over time. NP amounts in the different fluids were determined by fluorescence measurements. No particles could be detected in the vascular and lymphatic system. By contrast a major amount of NPs was found in luminal samples. Yet, a substantial share of particles could not be recovered in the fluid fractions, indicating a sink function of the intestinal tissue for NPs. A histological examination of the gut revealed that virtually no particles adhered to the epithelium or resided in the tissue, the bulk of particles seemed to be trapped in the mucus lining the gut tube. When this mucus was dissolved and removed from the gut almost the entire amount of particles missing could be recovered: over 95% of the given NPs were present in the two fractions, the luminal samples and the dissolved mucus. To foster NP uptake via an extended interaction time with the epithelium, the intestinal peristalsis was decelerated and the duration of the experiment was prolonged. Even under those conditions, no particle fluorescence was detected in the vascular and lymphatic samples.Conclusion: We could show that after intestinal exposure with a large dose of NPs the vast majority of NPs did obviously not come into contact with the epithelium but was either directly discarded from the gut or trapped in mucus. The healthy small intestinal tract evidently provides an effective barrier against NP uptake whereby the mucus film seems to play an important role.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3