Extreme PCR: Efficient and Specific DNA Amplification in 15–60 Seconds

Author:

Farrar Jared S12,Wittwer Carl T1

Affiliation:

1. Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT

2. Current affiliation: MD–PhD Program, Virginia Commonwealth University, Richmond, VA

Abstract

Abstract BACKGROUND PCR is a key technology in molecular biology and diagnostics that typically amplifies and quantifies specific DNA fragments in about an hour. However, the kinetic limits of PCR are unknown. METHODS We developed prototype instruments to temperature cycle 1- to 5-μL samples in 0.4–2.0 s at annealing/extension temperatures of 62 °C–76 °C and denaturation temperatures of 85 °C–92 °C. Primer and polymerase concentrations were increased 10- to 20-fold above typical concentrations to match the kinetics of primer annealing and polymerase extension to the faster temperature cycling. We assessed analytical specificity and yield on agarose gels and by high-resolution melting analysis. Amplification efficiency and analytical sensitivity were demonstrated by real-time optical monitoring. RESULTS Using single-copy genes from human genomic DNA, we amplified 45- to 102-bp targets in 15–60 s. Agarose gels showed bright single bands at the expected size, and high-resolution melting curves revealed single products without using any “hot start” technique. Amplification efficiencies were 91.7%–95.8% by use of 0.8- to 1.9-s cycles with single-molecule sensitivity. A 60-bp genomic target was amplified in 14.7 s by use of 35 cycles. CONCLUSIONS The time required for PCR is inversely related to the concentration of critical reactants. By increasing primer and polymerase concentrations 10- to 20-fold with temperature cycles of 0.4–2.0 s, efficient (>90%), specific, high-yield PCR from human DNA is possible in <15 s. Extreme PCR demonstrates the feasibility of while-you-wait testing for infectious disease, forensics, and any application where immediate results may be critical.

Funder

University of Utah

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Reference26 articles.

1. The Polymerase Chain Reaction

2. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase;Saiki;Science,1988

3. Minimizing the time required for DNA amplification by efficient heat transfer to small samples;Wittwer;Anal Biochem,1990

4. Rapid cycle DNA amplification: time and temperature optimization;Wittwer;Biotechniques,1991

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3