Closed-Tube PCR with Nested Serial Invasion Probe Visualization Using Gold Nanoparticles

Author:

Wang Jianping12,Zou Bingjie1,Ma Yinjiao1,Ma Xueping1,Sheng Nan1,Rui Jianzhong1,Shao Yang3,Zhou Guohua1

Affiliation:

1. Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China

2. Guangzhou Biotron Technology Co. Ltd., Guangzhou, China

3. GENESEEQ Biotechnology Inc., Nanjing, China

Abstract

Abstract BACKGROUND Detecting DNA biomarkers related to personalized medicine could improve the outcome of drug therapy. However, personalized medicine in a resource-restrained hospital is very difficult because DNA biomarker detection should be performed by well-trained staff and requires expensive laboratory facilities. METHODS We developed a gold nanoparticle–based “Tube-Lab” to enable DNA analysis in a closed tube. Gold nanoparticle–modified probes (GNPs) were used to construct an inexpensive and simple DNA sensor for signal readout. The method consists of 3 steps (template amplification, sequence identification, and GNP-based signal readout), bridged by an invasive reaction. With temperature control at each step, the 3 reactions proceed sequentially and automatically in a closed tube without any liquid transfer. We used Tube-Lab to detect different biomarkers in blood, tissue, and plasma, including US Food and Drug Administration–approved pharmacogenomic biomarkers (single nucleotide polymorphisms, somatic mutations). RESULTS The combination of PCR-based template replication and invader-based signal amplification allowed detection of approximately 6 copies of input DNA and the selective pick up 0.1% mutants from large amounts of background DNA. This method highly discriminated polymorphisms and somatic mutations from clinical samples and allowed a “liquid biopsy” assay with the naked eye. CONCLUSIONS Tube-Lab provides a promising and cost-effective approach for DNA biomarker analysis, including polymorphisms and somatic mutations from blood DNA, tissue DNA, or circulating tumor DNA in plasma, which are critical for personalized medicine.

Funder

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province

National Key Science & Technology Special Project

State Key Basic Research Program of PRC

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3