Quantifying EGFR Alterations in the Lung Cancer Genome with Nanofluidic Digital PCR Arrays

Author:

Wang Jun1,Ramakrishnan Ramesh1,Tang Zhe2,Fan Weiwen2,Kluge Amy2,Dowlati Afshin2,Jones Robert C1,Ma Patrick C2

Affiliation:

1. Fluidigm Corporation, South San Francisco, CA

2. Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, University Hospitals Case Medical Center, Ireland Cancer Center, and Case Comprehensive Cancer Center, Cleveland, OH

Abstract

Abstract Background: The EGFR [epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)] gene is known to harbor genomic alterations in advanced lung cancer involving gene amplification and kinase mutations that predict the clinical response to EGFR-targeted inhibitors. Methods for detecting such molecular changes in lung cancer tumors are desirable. Methods: We used a nanofluidic digital PCR array platform and 16 cell lines and 20 samples of genomic DNA from resected tumors (stages I–III) to quantify the relative numbers of copies of the EGFR gene and to detect mutated EGFR alleles in lung cancer. We assessed the relative number of EGFR gene copies by calculating the ratio of the number of EGFR molecules (measured with a 6-carboxyfluorescein–labeled Scorpion™ assay) to the number of molecules of the single-copy gene RPP30 (ribonuclease P/MRP 30kDa subunit) (measured with a 6-carboxy-X-rhodamine–labeled TaqMan™ assay) in each panel. To assay for the EGFR L858R (exon 21) mutation and exon 19 in-frame deletions, we used the ARMS™ and Scorpion technologies in a DxS/Qiagen EGFR29 Mutation Test Kit for the digital PCR array. Results: The digital array detected and quantified rare gefitinib/erlotinib-sensitizing EGFR mutations (0.02%–9.26% abundance) that were present in formalin-fixed, paraffin-embedded samples of early-stage resectable lung tumors without an associated increase in gene copy number. Our results also demonstrated the presence of intratumor molecular heterogeneity for the clinically relevant EGFR mutated alleles in these early-stage lung tumors. Conclusions: The digital PCR array platform allows characterization and quantification of oncogenes, such as EGFR, at the single-molecule level. Use of this nanofluidics platform may provide deeper insight into the specific roles of clinically relevant kinase mutations during different stages of lung tumor progression and may be useful in predicting the clinical response to EGFR-targeted inhibitors.

Funder

NIH

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3