DNA Sequence Capture and Enrichment by Microarray Followed by Next-Generation Sequencing for Targeted Resequencing: Neurofibromatosis Type 1 Gene as a Model

Author:

Chou Lan-Szu1,Liu C-S Jonathan2,Boese Benjamin3,Zhang Xinmin4,Mao Rong15

Affiliation:

1. Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT

2. SoftGenetics, LLC, State College, PA

3. 454 Life Sciences, A Roche Company, Branford, CT

4. Roche NimbleGen, Madison, WI

5. Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT

Abstract

Abstract Background: The introduction and use of next-generation sequencing (NGS) techniques have taken genomic research into a new era; however, implementing such powerful techniques in diagnostics laboratories for applications such as resequencing of targeted disease genes requires attention to technical issues, including sequencing template enrichment, management of massive data, and high interference by homologous sequences. Methods: In this study, we investigated a process for enriching DNA samples that uses a customized high-density oligonucleotide microarray to enrich a targeted 280-kb region of the NF1 (neurofibromin 1) gene. The captured DNA was sequenced with the Roche/454 GS FLX system. Two NF1 samples (CN1 and CN2) with known genotypes were tested with this protocol. Results: Targeted microarray capture may also capture sequences from nontargeted regions in the genome. The capture specificity estimated for the targeted NF1 region was approximately 60%. The de novo Alu insertion was partially detected in sample CN1 by additional de novo assembly with 50% base-match stringency; the single-base deletion in sample CN2 was successfully detected by reference mapping. Interferences by pseudogene sequences were removed by means of dual-mode reference-mapping analysis, which reduced the risk of generating false-positive data. The risk of generating false-negative data was minimized with higher sequence coverage (>30×). Conclusions: We used a clinically relevant complex genomic target to evaluate a microarray-based sample-enrichment process and an NGS instrument for clinical resequencing purposes. The results allowed us to develop a systematic data-analysis strategy and algorithm to fit potential clinical applications.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3