Fluorouracil: biochemistry and pharmacology.

Author:

Pinedo H M,Peters G F

Abstract

Fluorouracil (5FU) is still considered the most active antineoplastic agent in the treatment of advanced colorectal cancer. The drug needs to be converted to the nucleotide level in order to exert its effect. It can be incorporated into RNA leading to interference with the maturation of nuclear RNA. However, its conversion to 5-fluoro-2'deoxy-5' monophosphate (FdUMP) leading to inhibition of thymidylate synthase (TS) and subsequently of DNA synthesis, is considered to be its main mechanism of action. In the presence of a folate cofactor a covalent ternary complex is formed, the stability of which is the main determinant of the action of 5FU. Resistance against 5FU can be mainly attributed to aberrations in its metabolism or to alterations of TS, eg, gene amplification, altered kinetics in respect to nucleotides or folates. Biochemical modulation of 5FU metabolism can be applied to overcome resistance against 5FU. A variety of normal purines, pyrimidines, and other antimetabolites have been studied in this respect, but only some of them have been clinically successful. Delayed administration of uridine has recently been shown to "rescue" mice and patients from toxicity, while pretreatment with leucovorin is the most promising combination to enhance the therapeutic efficacy. 5FU is frequently administered in an intravenous (IV) injection, and shows a rapid distribution and a triphasic elimination. The nonlinearity of 5FU pharmacokinetics is related to saturation of its degradation. Continuous infusion of 5FU led to different kinetics. Regional administration, such as hepatic artery infusion, offers a way to achieve higher drug concentrations in liver metastases and is accompanied by lower systemic concentration. The current status of the biochemical and pharmacokinetic data is reviewed.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 727 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3