Structure and Clinical Relevance of the Epidermal Growth Factor Receptor in Human Cancer

Author:

Kumar Amit1,Petri Edward T.1,Halmos Balazs1,Boggon Titus J.1

Affiliation:

1. From the Department of Pharmacology, Yale University School of Medicine, New Haven, CT; and the Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH

Abstract

Purpose To review the recent advances in the atomic-level understanding of the epidermal growth factor receptor (EGFR) tyrosine kinase (TK). We aim to highlight the current and future importance of these studies for the understanding and treatment of malignancies where EGFR-TK is improperly activated. Methods The analysis was conducted on published crystal structures deposited in the Protein Data Bank ( www.pdb.org ) using the program O. Results In this review we emphasize how recent EGFR kinase domain crystal structures can explain the mechanisms of activation for L858R and other EGFR-TK mutations, and compare these distinct activating mechanisms with those recently described for the wild-type EGFR. We suggest an atomic-level mechanism for the poor efficacy of lapatinib against tumors with activating EGFR kinase domain point mutations compared with the efficacy of gefitinib and erlotinib, and demonstrate how structural insights help our understanding of acquired resistance to these agents. We also highlight how these new molecular-level structural data are expected to affect the development of EGFR-TK targeted small molecule kinase inhibitors. Conclusion There are now more crystal structures published for the EGFR-TK domain than for any other TK. This wealth of crystallographic information is beginning to describe the mechanisms by which proper regulation of EGFR-TK is lost in disease. These crystal structures are beginning to show how small molecules inhibit EGFR-TK activity and will aid development of EGFR-TK mutant targeted therapies.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3