Development of Therapeutic Combinations Targeting Major Cancer Signaling Pathways

Author:

Yap Timothy A.1,Omlin Aurelius1,de Bono Johann S.1

Affiliation:

1. All authors: Royal Marsden National Health Service Foundation Trust and The Institute of Cancer Research, Sutton, Surrey, United Kingdom.

Abstract

Signaling networks play key homeostatic processes in living organisms but are commonly hijacked in oncogenesis. Prominent examples include genetically altered receptor tyrosine kinases and dysregulated intracellular signaling molecules. The discovery and development of targeted therapies against such oncogenic proteins has imparted clinical benefit. Nevertheless, concerns remain about the limited single-agent efficacy and narrow therapeutic indices of many of these antitumor agents. Moreover, it is apparent that oncogenic proteins comprise complex signaling networks that interact through crosstalk and feedback loops, which modify therapeutic vulnerability. These complexities mandate the study of drug combinations, which will also become necessary to reverse tumor drug resistance. Here, we outline the challenges associated with rational drug codevelopment strategies, with a focus on the importance of analytically validated biomarkers for patient selection and pharmacokinetic-pharmacodynamic (PK-PD) studies. Overall, the most informative clinical studies of novel combinations will have the following characteristics: robust scientific hypotheses leading to their selection; supportive preclinical data from contextually appropriate preclinical model systems; sufficient preclinical PK data to inform on the risk of drug-drug interactions; and detailed PD studies to determine the biologically active dose range for each agent. Toward this end, several novel clinical trial designs may be envisioned to accelerate successful drug combination development while minimizing the risk of late drug combination attrition. Although considerable challenges remain, these efforts may enable important steps to be taken toward more durable therapeutic control of many cancers.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3