Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer

Author:

Liao Zhongxing1,Lee J. Jack1,Komaki Ritsuko1,Gomez Daniel R.1,O’Reilly Michael S.1,Fossella Frank V.1,Blumenschein George R.1,Heymach John V.1,Vaporciyan Ara A.1,Swisher Stephen G.1,Allen Pamela K.1,Choi Noah Chan1,DeLaney Thomas F.1,Hahn Stephen M.1,Cox James D.1,Lu Charles S.1,Mohan Radhe1

Affiliation:

1. Zhongxing Liao, J. Jack Lee, Ritsuko Komaki, Daniel R. Gomez, Michael S. O’Reilly, Frank V. Fossella, George R. Blumenschein Jr, John V. Heymach, Ara A. Vaporciyan, Stephen G. Swisher, Pamela K. Allen, Stephen M. Hahn, James D. Cox, Charles S. Lu, and Radhe Mohan, The University of Texas MD Anderson Cancer Center, Houston, TX; and Noah Chan Choi and Thomas F. DeLaney, Massachusetts General Hospital and Harvard Medical School, Boston, MA.

Abstract

Purpose This randomized trial compared outcomes of passive scattering proton therapy (PSPT) versus intensity-modulated (photon) radiotherapy (IMRT), both with concurrent chemotherapy, for inoperable non–small-cell lung cancer (NSCLC). We hypothesized that PSPT exposes less lung tissue to radiation than IMRT and thereby reduces toxicity without compromising tumor control. The primary end points were grade ≥ 3 radiation pneumonitis (RP) and local failure (LF). Patients and Methods Eligible patients had stage IIB to IIIB NSCLC (or stage IV NSCLC with a single brain metastasis or recurrent lung or mediastinal disease after surgery) who were candidates for concurrent chemoradiation therapy. Pairs of treatment plans for IMRT and PSPT were created for each patient. Patients were eligible for random assignment only if both plans satisfied the same prespecified dose-volume constraints for at-risk organs at the same tumor dose. Results Compared with IMRT (n = 92), PSPT (n = 57) exposed less lung tissue to doses of 5 to 10 Gy(RBE), which is the absorbed Gy dose multiplied by the relative biologic effectiveness (RBE) factor for protons; exposed more lung tissue to ≥ 20 Gy(RBE), but exposed less heart tissue at all dose levels between 5 and 80 Gy(RBE). The grade ≥ 3 RP rate for all patients was 8.1% (IMRT, 6.5%; PSPT, 10.5%); corresponding LF rates were 10.7% (all), 10.9% (IMRT), and 10.5% (PSPT). The posterior probability of IMRT being better than PSPT was 0.54. Exploratory analysis showed that the RP and LF rates at 12 months for patients enrolled before versus after the trial midpoint were 21.1% (before) versus 18.2% (after) for the IMRT group (P = .047) and 31.0% (before) versus 13.1% (after) for the PSPT group (P = .027). Conclusion PSPT did not improve dose-volume indices for lung but did for heart. No benefit was noted in RP or LF after PSPT. Improvements in both end points were observed over the course of the trial.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3