The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM

Author:

Chi Qianru1ORCID,Luan Yilin1ORCID,Zhang Yiming1ORCID,Hu Xueyuan1ORCID,Li Shu1ORCID

Affiliation:

1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China

Abstract

Abstract Apoptosis is a common paradigm of cell death and plays a key role in cartilage damage and selenium (Se) deficiency. Selenoproteins play major roles in determining the biological effects of Se, and are potentially involved in the pathophysiological processes in bone tissue. MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, apoptosis and tumorigenesis. Based on the preliminary results, the expression of selenoprotein M (SelM) was significantly decreased (69%) in chicken cartilage tissues with Se deficiency, and we subsequently screened and verified that SelM is one of the target genes of miR-138-5p in chicken cartilage using a dual luciferase reporter assay and real-time quantitative PCR (qRT-PCR). The expression of miR-138-5p was increased in response to Se deficiency, and the overexpression of miR-138-5p increased caspase-3, caspase-9, BAX and BAK levels, while the BCL-2 level was decreased, suggesting that miR-138-5p induced apoptosis via the mitochondrial pathway in vivo and in vitro. We explored whether oxidative stress, mitochondrial fission and fusion, and energy metabolism might trigger apoptosis to obtain an understanding of the mechanisms underlying the effects of miR-138-5p on Se deficiency-induced apoptosis in cartilage. The levels of indicators of oxidative stress, mitochondrial dynamics and energy metabolism were changed as well. This study confirmed that SelM is one of the target genes of miR-138-5p, and the overexpression of miR-138-5p induced by Se deficiency triggered oxidative stress, an imbalance in mitochondrial fission and fusion, and energy metabolism dysfunction. Therefore, miR-138-5p is involved in the mitochondrial apoptosis pathway via targeting SelM in chicken chondrocytes.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3