Silicon Oxide-based CBRAM Memory and Neuromorphic Properties

Author:

Bousoulas P.1,Tsoukalas D.1

Affiliation:

1. School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15772, Greece

Abstract

The constant scaling of the conventional field-effect transistors (FETs) over the last half century has permitted the development of memory elements with enhanced density. However, since continuous miniaturization is practically impossible, novel device architectures have been proposed. Among them, resistive switching memories (RRAMs) emerge as quite promising candidates due to their simple structure, which permits aggressive scaling, and inherent stochastic performance, which is leveraged for the implementation of neuromorphic functionalities. Along these lines, a detailed analysis from a material point of view is presented, as far as the fabrication of SiO2-based resistive switching elements is concerned. The incorporation of metal nanoparticles (NPs) with various surface densities, as well as the employment of bilayer configurations, is thoroughly investigated in enhancing the total memory performance. More specifically, low-power operation (∼ 200 mV), enhanced variability (σ/μ < 0.2) and multibit capabilities (4 bits) were demonstrated. Moreover, the manifestation of two switching modes (bipolar and threshold) was leveraged to emulate artificial neuron and synaptic functionalities. As a result, integrate and fire (IF) properties were produced from single memristive cells, whereas enhanced analog synaptic weight modulation was also recorded. Physics-driven device engineering is thus of great importance for attaining reconfigurable memory and neuromorphic properties.

Publisher

Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3