Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries
Author:
Affiliation:
1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
2. Collaborative Innovation Center of Chemical Science and Engineering
3. College of Chemistry
4. Nankai University
5. Tianjin 300071, China
Abstract
As the anode material for lithium-ion batteries, the pitaya-like Sn8@C nanocomposite shows a reversible capacity of 410 mA h g−1 after 1000 cycles at 4000 mA g−1 in the voltage range of 0.02–3.0 V.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2014/NR/C3NR05523J
Reference44 articles.
1. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties
2. Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries
3. Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries
4. Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode
5. Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries
Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Progress of Main-Group Metal-Based Single-Atom Catalysts;Electrochemical Energy Reviews;2024-08-13
2. Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging;Chinese Chemical Letters;2024-07
3. Electrochemically synthesized Tin micro-nanometer powders for visible light photocatalytic degradation of Rhodamine B dye from polluted water;Advanced Composites and Hybrid Materials;2024-06-26
4. Electrochemically synthesized Tin micro-nanometer powders for visible light photocatalytic degradation of Rhodamine B dye from polluted water;2024-04-29
5. Alloying and Nanotechnology for Sn‐based Anode Materials: Paving the Way to the Future of Lithium‐Ion Batteries;Batteries & Supercaps;2023-09-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3