Design and synthesis of diverse Cd2+/Zn2+/Cu2+ coordination polymers tuned by dicarboxylate and auxiliary 1,4-bis(pyridin-4-ylmethyl)piperazine ligands with luminescence and Hirshfeld surface analyses

Author:

Jin Nanhao,Liu Yuqi,Dai Siyu,Li Yanghua,Wang Xinying,Zhao YueORCID,Liu Xiaoming,Chen Han,Luo Huilong,Li Wei

Abstract

Four new coordination polymers, including 1D, 2D and 3D structures, were synthesized via a hydrothermal method using Cd2+/Zn2+/Cu2+ metal salts as nodes. These polymers were formed through self-assembly of four different dicarboxylic acid ligands, namely adamantane-1,3-dicarboxylic acid (H2adc), glutaric acid (H2glu), 5-hydroxyisophthalic acid (H2hip) and fumaric acid (H2fum), in conjunction with the auxiliary ligand [1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp). The corresponding formulae are [Cd3(adc)2(bpmp)Cl2(H2O)2] n (1), {[Cd2(glu)2(bpmp)2(H2O)2]·8H2O·2CH3OH} n (2), [Zn(hip)(bpmp)(H2O)] n (3) and [Cu(fum)(bpmp)(H2O)2] n (4). Single-crystal X-ray diffraction studies revealed that the Cd2+ centers in complex 1 all adopt a six-coordinate mode but two distinct {CdO2N2Cl2} and {CuO5Cl} units. The 3D network of complex 1 can be simplified to a binodal (4.6)-connected underlying net with the point symbol (3·42·5·62)4(32·62·72·88·10). Each Cd2+ cation in complex 2 adopts a seven-coordinate {CdO5N2} center, forming an asymmetric pentagonal bipyramidal coordination. Its stacking structure is formed by the interaction of hydrogen bonds between 2D supramolecular layers, with the adjacent layers exhibiting mirror symmetry. Each Zn2+ ion in complex 3 displays a {ZnO3N} four-coordinate unit. Its stacking structure is formed by one-dimensional [Zn(hip)(bpmp)(H2O)] n chains connected through hydrogen bonds. On the other hand, complex 4 features a Jahn–Teller distorted {CuO4N2} octahedral coordination. Subsequently, the thermal stability of these complexes was investigated. The solid-state fluorescence spectroscopy was employed to analyze complexes 1, 2 and 3. Additionally, a Hirshfeld surface analysis was performed on complex 3.

Funder

Kunming University of Science and Technology

National Natural Science Foundation of China

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3