Effects of temperature, mechanical motion and source positional jitter on the resolving power of beamline 02B at the SSRF

Author:

Guo Zhi,Meng Xiangyu,Wang Yong,Liu Haigang,Zhang Xiangzhi,Li Zhongliang,Xue Lian,Tai Renzhong

Abstract

A detailed analysis of the effects of temperature excursions, instrumental mechanical motion and source position jitter on the energy-resolving power of beamline 02B at the Shanghai Synchrotron Radiation Facility (SSRF) is presented in this study. This beamline uses a bending-magnet-based source and includes a variable-line-spacing grating monochromator with additional optics. Expressions are derived for the monochromator output photon energy shifts for each of the performance challenges considered. The calculated results indicate that measured temperature excursions of ±1 K produce an energy shift of less than 11% of the system's energy resolution. Mechanical displacements and vibrations measured at amplitudes of less than 0.5 µm produce changes of less than 5%, while measured source location jitter results in a change of less than 10%. Spectroscopic test experiments at 250 and 400 eV provide energy resolutions of over 104. This analysis, combined with the measured results, confirms the operational stability of the beamline, indicating that it meets the performance requirements for experimental use.

Funder

National Natural Science Foundation of China

National Major Scientific Instruments and Equipment Development of NSFC

National Key Basic Research Program of China `973 Program'

Key Program of NSFC

National Key Research and Development Program

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3