In situ synchrotron X-ray multimodal experiment to study polycrystal plasticity

Author:

Ribart ClementORCID,King Andrew,Ludwig Wolfgang,Bertoldo Joao P. C.,Proudhon HenryORCID

Abstract

The microstructure of polycrystals is known to govern the performance of structural materials. This drives the need for mechanical characterization methods capable of probing large representative volumes at the grain and sub-grain scales. In this paper, the use of in situ diffraction contrast tomography (DCT) along with far-field 3D X-ray diffraction (ff-3DXRD) at the Psiché beamline of Soleil is presented and applied to study crystal plasticity in commercially pure titanium. A tensile stress rig was modified to comply with the DCT acquisition geometry and used for in situ testing. DCT and ff-3DXRD measurements were carried out during a tensile test of a tomographic Ti specimen up to 1.1% strain. The evolution of the microstructure was analyzed in a central region of interest comprising about 2000 grains. Using the 6DTV algorithm, DCT reconstructions were successfully obtained and allowed the characterization of the evolution of lattice rotation in the entire microstructure. The results are backed up by comparisons with EBSD and DCT maps acquired at ESRF-ID11 that allowed the validation of the orientation field measurements in the bulk. Difficulties at the grain boundaries are highlighted and discussed in line with increasing plastic strain during the tensile test. Finally, a new outlook is provided on the potential of ff-3DXRD to enrich the present dataset with access to average lattice elastic strain data per grain, on the possibility of performing crystal plasticity simulations from DCT reconstructions, and ultimately on comparisons between experiments and simulations at the scale of the grain.

Funder

Safran

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3