Development of an advanced in-line multilayer deposition system at Diamond Light Source

Author:

Wang Hongchang,Majhi Arindam,Tan Wai Jue,Singhapong WadwanORCID,Morawe ChristianORCID,Sawhney KawalORCID

Abstract

A state-of-the-art multilayer deposition system with a 4200 mm-long linear substrate translator housed within an ultra-high vacuum chamber has been developed. This instrument is engineered to produce single and multilayer coatings, accommodating mirrors up to 2000 mm in length through the utilization of eight rectangular cathodes. To ensure the quality and reliability of the coatings, the system incorporates various diagnostic tools for in situ thickness uniformity and stress measurement. Furthermore, the system features an annealing process capable of heating up to 700°C within the load-lock chamber. The entire operation, including pump down, deposition and venting processes, is automated through user-friendly software. In addition, all essential log data, power of sputtering source, working pressure and motion positions are automatically stored for comprehensive data analysis. Preliminary commissioning results demonstrate excellent lateral film thickness uniformity, achieving 0.26% along the translation direction over 1500 mm in dynamic mode. The multilayer deposition system is poised for use in fabricating periodic, lateral-graded and depth-graded multilayers, specifically catering to the beamlines for diverse scientific applications at Diamond Light Source.

Publisher

International Union of Crystallography (IUCr)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3