Abstract
The effects of varying LiPF6salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygenK-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygenK-edge results agree with previous soft X-ray absorption studies on LiBF4salt concentration in propylene carbonate, carbonK-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.
Funder
Türkiye Atom Enerjisi Kurumu
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
Deutsche Forschungsgemeinschaft
Ankara University Institute of Accelerator Technologies
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献