A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram

Author:

Bellos Dimitrios,Basham MarkORCID,Pridmore Tony,French Andrew P.

Abstract

X-ray computed tomography and, specifically,time-resolvedvolumetric tomography data collections (4D datasets) routinely produce terabytes of data, which need to be effectively processed after capture. This is often complicated due to the high rate of data collection required to capture at sufficient time-resolution events of interest in a time-series, compelling the researchers to perform data collection with a low number of projections for each tomogram in order to achieve the desired `frame rate'. It is common practice to collect a representative tomogram with many projections, after or before the time-critical portion of the experiment without detrimentally affecting the time-series to aid the analysis process. For this paper these highly sampled data are used to aid feature detection in the rapidly collected tomograms by assisting with the upsampling of their projections, which is equivalent to upscaling the θ-axis of the sinograms. In this paper, a super-resolution approach is proposed based on deep learning (termed an upscaling Deep Neural Network, or UDNN) that aims to upscale the sinogram space of individual tomograms in a 4D dataset of a sample. This is done using learned behaviour from a dataset containing a high number of projections, taken of the same sample and occurring at the beginning or the end of the data collection. The prior provided by the highly sampled tomogram allows the application of an upscaling process with better accuracy than existing interpolation techniques. This upscaling process subsequently permits an increase in the quality of the tomogram's reconstruction, especially in situations that require capture of only a limited number of projections, as is the case in high-frequency time-series capture. The increase in quality can prove very helpful for researchers, as downstream it enables easier segmentation of the tomograms in areas of interest, for example. The method itself comprises a convolutional neural network which through training learns an end-to-end mapping between sinograms with a low and a high number of projections. Since datasets can differ greatly between experiments, this approach specifically develops a lightweight network that can easily and quickly be retrained for different types of samples. As part of the evaluation of our technique, results with different hyperparameter settings are presented, and the method has been tested on both synthetic and real-world data. In addition, accompanying real-world experimental datasets have been released in the form of two 80 GB tomograms depicting a metallic pin that undergoes corruption from a droplet of salt water. Also a new engineering-based phantom dataset has been produced and released, inspired by the experimental datasets.

Funder

University of Nottingham

Diamond Light Source

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Reference43 articles.

1. Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm

2. Atwood, R. C., Bodey, A. J., Price, S. W. T., Basham, M. & Drakopoulos, M. (2015). Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373, 20140398.

3. Bellos, D., Basham, M., French, A. P. & Pridmore, T. (2018a). UDNN_Real_Datasets, https://zenodo.org/record/1299359. Zenodo, 27 June 2018.

4. Bellos, D., Basham, M., French, A. P. & Pridmore, T. (2018b). UDNN_Synthetic_Datasets, https://zenodo.org/record/1306243. Zenodo, 25 June 2018.

5. Bellos, D., Basham, M., French, A. P. & Pridmore, T. (2018c). DimitriosBellos/UDNN:UDNN, https://zenodo.org/record/1299347. Zenodo, 2018.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3