Diffraction analysis of strongly inhomogeneous residual stress depth distributions by modification of the stress scanning method. II. Experimental implementation

Author:

Meixner Matthias,Fuss Tillman,Klaus Manuela,Genzel Martin,Genzel Christoph

Abstract

The modified stress scanning method [Meixner, Fuss, Klaus & Genzel (2015).J. Appl. Cryst.48, 1451–1461] is experimentally implemented for the analysis of near-surface residual stress depth distributions that are strongly inhomogeneous. The suggested procedure is validated by analyzing the very steep in-plane residual stress depth profile of a shot-peened Al2O3ceramic specimen and comparing the results with those that were obtained by well established X-ray diffraction-based gradient methods. In addition, the evaluation formalism is adapted to the depth-dependent determination of the residual stresses inside of multilayer thin-film systems. The applicability for this purpose is demonstrated by investigating the residual stress depth distribution within the individual sublayers of a multilayered coating that consists of alternating Al2O3and TiCN thin films. In this connection, the specific diffraction geometry that was used for the implementation of the stress scanning method at the energy-dispersive materials science beamline EDDI@BESSYII is presented, and experimental issues as well as limitations of the method are discussed.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3