Modified photoreactivity due to mixed crystal formation. II. Enhanced reactivity upon conformational mimicry and cavity enlargement

Author:

Vithana Champika,Uekusa Hidehiro,Sekine Akiko,Ohashi Yuji

Abstract

The 2-cyanopropyl (β-cyanopropyl) group in the cobaloxime complex of (2-cyanopropyl)(3-methylpyridine)bis(dimethylglyoximato)cobalt(III) takes a trans conformation around the Co—C—C—CN bond in the crystal and undergoes isomerization to the 1-cyanopropyl (α-cyanopropyl) group with a low reaction rate when the powdered crystals are irradiated with a xenon lamp. When the complex was mixed with (2-cyanoethyl)(3-methylpyridine)bis(dimethylglyoximato)cobalt(III) or (2-cyanoethyl)(3-ethylpyridine)bis(dimethylglyoximato)cobalt(III), a mixed crystal, Mix-I or Mix-II, was obtained. The cell parameters of Mix-I and Mix-II were considerably different. When the crystals of Mix-I and Mix-II were irradiated with the xenon lamp, the 2-cyanopropyl group and the 2-cyanoethyl group isomerized to the 1-cyanopropyl and 1-cyanoethyl groups, respectively, in the crystalline state as well as in the solid state. The isomerization rates of the 2-cyanopropyl and 2-cyanoethyl groups of the mixed crystals became significantly higher than the corresponding rates in the component crystals. For the 2-cyanopropyl group, the conformational change from trans to cis in the mixed crystals caused reaction rates to be enhanced, and the expanded volume of the reaction cavity in the mixed crystals increased the reactivity for the 2-cyanoethyl group, when compared with the reactivity of each component crystal. A quantitative discussion of the increased rate constants is presented, which is based on the crystal structures. The shapes of the reaction cavities for the reactive groups undergoing isomerization control the conformation and configuration of the produced1-cyanoethyl and 1-cyanopropyl groups.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3