Sydney’s residential relocation landscape: Machine learning and feature selection methods unpack the whys and whens

Author:

Bostanara Maryam,Siripanich Amarin,Ghasri Milad,Hossein Rashidi Taha

Abstract

This study investigates household residential relocation timing, an aspect vital for transport and urban planning. Analyzing a high-dimensional dataset from 1,024 relocations in Sydney, Australia, the research contrasts ten machine learning survival techniques with three classical survival models. Results indicate that when classical models are paired with tree-based automated feature selectors, they align closely with machine learning outcomes. Notably, the GBM, XGBoost, and Random Forest models emerge as standout performers. The study provides a comprehensive comparison between automatic and manual feature selection, shedding light on variables influencing households’ duration of stay. While stacked ensemble modeling, which leverages predictions from various models, is used to enhance accuracy, the improvements are marginal, underscoring inherent modeling challenges, particularly the recurring issue of misclassifying specific pairs of households in the concordance index measure. A thorough feature analysis highlights homeownership as the foremost predictor, underscoring the importance of recent life events and accessibility features in relocation decisions. The research emphasizes the importance of considering the accessibility of both current and future homes in relocation models, with 20% feature significance in model outcomes. Building on these foundational insights, the study paves the way for a deeper understanding of individual decision-making processes in sustainable urban planning.

Publisher

Center for Transportation Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3